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Abstract
Compute Express Link (CXL) shared memory is an emerging
industry standard that will allow for cache coherent sharing
of remote memory between many machines. Memory de-
vices will contain large amounts of DRAM that can be shared
bymanymachines in a CXL cluster. This will enable software
running on clusters of computers to use shared memory to
communicate more efficiently and to share important data
between these machines.
As CXL clusters grow larger, machine failures will be-

come a significant risk. Software will need to tolerate ma-
chine failures. A key challenge is that CXL uses caching
of remote memory to hide latency. If a machine fails be-
fore it has flushed dirty cache lines back to the CXL shared
memory device, the latest stores to those cache lines will
be lost. Data structures have been developed that combine
crash-consistent designs with flush and fence instructions
to ensure that the data structures remain consistent even in
the presence of failures.
However, developing such crash-consistent data struc-

tures is error prone. It is easy to make a design or implemen-
tation error. Such crash consistency errors are hard to detect
with testing. We propose CXLMC, a model checker that sys-
tematically explores crashing executions for the x86-CXL
shared memory platform. We have evaluated CXLMC and
found 24 bugs in 8 applications including 7 new bugs.

1 Introduction
Compute Express Link (CXL) is an open standard for cache-
coherent interconnects [1, 22]. CXL enables multiple ma-
chines to access memory shared by a CXL network-attached
memory device in a cache-coherent fashion. CXL has the
potential to enable new software that leverages multiple ma-
chines to efficiently compute on shared data. It also enables
multiple machines to efficiently share one copy of a large
dataset. CXL has started to attract the interest of the systems
research community and several researchers have proposed
using clusters of CXL connected machines, or CXL Pods [87],
to implement more efficient database systems [36, 39, 40, 51]
and key value stores [67].
CXL 3.2 is designed to support cache coherent sharing

between up to 4,095 memory entities. With larger clusters,
machine failures will inevitably occur. Clusters will contain
both memory nodes and compute nodes. We expect that

there will be fewer memory nodes and thus they will have
a lower risk of failure. Compute nodes, on the other hand,
will be more common, and thus there will be a higher risk
that one fails.
Software applications will need to tolerate the failure of

one or more compute nodes. The first challenge is that a
compute node failure stops the execution of the program on
that node, and software must tolerate this. However, caches
bring additional challenges for tolerating failures. If a failed
compute node has written to a cache line, it is possible that
the only copy of those stores resided in the cache of the
failed compute node. While CXL has a mechanism, global
persistent flush (GPF), for flushing the machine’s cache, GPF
is primarily targeted towards power outages. GPF does not
address a wide range of other potential failures such as a
power supply, motherboard, or CXL transceiver failure.

Persistent memory (PM) systems have similar challenges
with failures. However, there are significant differences be-
tween failures in CXL shared memory and PM. First, we
expect partial failures in which one compute node fails to
be the primary concern for CXL shared memory systems,
whereas PM systems have a complete failure model. Second,
CXL systems know which cache lines were lost due to the
cache coherence directory structure. Recovery procedures
can potentially leverage this information. The partial fail-
ure mode can complicate recovery. Operations on persistent
memory structures can assume that any failures have oc-
curred before the operation starts. For CXL memory, failures
can occur concurrently with running data structure opera-
tions and those operations may need recovery code to handle
concurrent failures. For example, a machine may fail while
another machine is running recovery code for a previous
failure, a scenario that is not possible for PM systems.
Developing crash-consistent code can be difficult. A key

lesson from earlier work on building crash-consistent per-
sistent memory applications is that developing correct
crash-consistent code is very difficult. Early work on crash-
consistent persistent memory data structures was largely
done without tool support. Later, researchers developed sev-
eral tools [2, 24, 27, 31, 33, 47, 54, 55, 61] for finding crash-
consistency bugs in persistent memory programs. Devel-
oping crash-consistent software without tool support has
proven to be bug prone. Between these tools, they have found
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183 crash-consistency bugs in a relatively small number of
benchmark applications.
The CXL shared memory standard is new, and the hard-

ware is not commercially available and thus has not yet been
used in real systems. Existing information suggests that the
amount of shared memory CXL systems support may be
limited [39–41]. Early work suggests that CXL shared mem-
ory may find use in data structures used for coordination
between machines and core index structures. There are on-
going efforts from both industry and academia to implement
key shared data structures using CXL shared memory, in-
cluding database indices [36, 39, 40, 51], message buffers
for cross-node communication [8, 56, 57], and shared object
stores [63, 72]. Note that a single machine crash could cor-
rupt these core data structures, stopping an entire cluster of
machines.
In this work, we present a model checker that enables

efficiently checking for crash consistency of x86-CXL shared
memory programs using a constraint-based approach; the
constraint-based approach was originally developed by prior
work on model checking persistent memory programs [33].
Differences between the CXL and PM failure and consistency
models mean that this approach is not directly applicable.
We have extended the constraint-based approach to handle
the CXL memory failure and consistency models. In partic-
ular, our model checker is able to emulate x86-CXL shared
memory programs running across multiple compute nodes,
as well as the partial failure of any subset of compute nodes.
Supporting these requirements efficiently requires innova-
tions in both algorithm design and implementation.
We introduce CXLMC, the first model checker for crash-

consistency bugs for CXL shared memory. While CXL is
intended to be cross-platform, our work focuses on CXL
shared memory using x86 machines. This paper makes the
following contributions:

• Adapting constraint-based model checking to
CXL shared memory: Constraint-based model
checking approaches must be modified because CXL
sharedmemory has a partial failuremodel, inwhich in-
dividual machines can fail during the execution while
others continue. CXL shared memory also has a dif-
ferent consistency model—remote reads ensure that
cache lines have been written to the backing storage.

• Multi-process support:Model checking CXL shared
memory requires novel implementation techniques
as CXL shared memory programs will have multiple
processes that all have access to a common shared
memory region. Prior model checkers do not support
this multi-process model.

• Implementation: We develop CXLMC to imple-
ment our model checking algorithm. CXLMC uses
the LLVM compiler to instrument C and C++ CXL
programs.

• Evaluation: We have evaluated CXLMC on a set
of benchmarks. These benchmarks consist of the
RECIPE [49] persistentmemory benchmarks that have
been adapted for use with CXL shared memory as well
as programs from CXL-SHM [85].

2 Background
In this section, we provide an overview of the relevant CXL
protocols and the TSO memory model.

2.1 Compute Express Link
Compute Express Link (CXL) features a suite of interconnect
protocols for low-latency remote memory accesses between
host and device machines. The CXL.mem protocol [66] gives
a host the ability to access the attached device memory at
cache line granularity with cache coherence guarantees. Ad-
ditionally, in the CXL 3.0 standard, multiple hosts share a sin-
gle CXL memory pool by mapping it into their address space
and accessing the memory concurrently and coherently, en-
abling applications to use CXL memory as distributed shared
memory [36, 85]. Although there is currently no implemen-
tation of CXL 3.0 in hardware, emulation is possible through
other means, such as having multiple NUMA nodes share a
CXL-enabled device [85].

2.2 Memory Model
Our tool implements the x86-TSO memory model with the
addition of cache line flush instructions. We based the prop-
erties of the memory instructions on prior formalizations
of the x86 persistent memory semantics [18, 43, 64], and in
particular, the 𝑃𝑥86𝑠𝑖𝑚 model [64]. Currently, there is no
definite standard on the CXL memory model beyond cache
coherence, and we chose this design based on discussions
with Intel engineers who confirmed that hardware cache-
coherent CXL memory is intended to support the TSOmodel.
Although the CXL standard is intended to be cross platform,
the exact memory semantics will depend on the underlying
machines. We chose to focus our efforts on x86 as many
of the available benchmarks [49, 85] assume the x86 archi-
tecture. We note that although CXL enables machines with
different memory models to coherently share memory, we do
not consider such scenarios, as the memory model for such
cases remains unclear. In contrast, CXL0 [10], an abstract
model for the CXL protocol layer, includes operations like a
remote store that currently have no x86 mapping, and thus
is not supported by CXLMC. If subtle differences are discov-
ered between the eventual implementations and the expected
failure semantics and memory model, we expect that our
approach is general enough to support these variations with
small changes. Figure 1 shows a representation of the target
memory model of our tool, namely multiple machines with
x86-TSO memory model sharing CXL memory.
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Figure 1. Three Machines with x86-TSO Memory Model
Sharing Two CXL Memory Devices

In the x86 total store order (TSO) memory model, each
thread has a store buffer that buffers its stores to the cache
to hide the memory access latency. Loads from a thread can
read the most recent store in its local store buffer through
bypassing, as well as stores that have been committed to the
cache, but they cannot read from stores in other thread’s
store buffers. In short, stores may be visible to the local
thread before other threads due to store buffering. Buffered
stores are committed to the cache in program order, but at a
nondeterministic rate. Fence instructions such as mfence and
sfence as well as RMW instructions have the effect of empty-
ing the store buffer immediately, causing all local stores to
become visible globally.
The x86 architecture provides three flush instructions —

clflush, clflushopt, and clwb. The clflush instruction is
the most expensive and has stronger ordering constraints. It
is ordered with respect to later writes and clflushopt/clwb
instructions. The other two instructions clflushopt and
clwb have the same weaker ordering constraints and are
often combined with fence instructions to flush multiple
cache lines in a batch. Their only difference is that clwb is
not required to invalidate the cache line written back to the
memory, leading to better performance in some cases. As far
as our system is concerned, they can be treated identically.
A summary of the ordering constraints between the relevant
instructions is shown in Table 1.
Shared cache-coherent CXL memory differs from persis-

tent memory in a few key ways. One key difference is that
cache coherence in shared CXL memory implies that when
one host loads a cache line owned by another host, the cache
line will be written back to the CXL memory device. An-
other key difference is that the directory structures on a CXL
memory node mean that in the event of a compute node
failure, CXL knows which cache lines were lost. This enables

Later in Program Order

Ea
rli
er

in
Pr
og

ra
m

O
rd
er Re Wr RMW mf sf clflushopt clflush

Read ✓ ✓ ✓ ✓ ✓ ✓ ✓
Write X ✓ ✓ ✓ ✓ CL ✓
RMW ✓ ✓ ✓ ✓ ✓ ✓ ✓
mfence ✓ ✓ ✓ ✓ ✓ ✓ ✓
sfence X ✓ ✓ ✓ ✓ ✓ ✓
clflushopt X X ✓ ✓ ✓ X CL
clflush X ✓ ✓ ✓ ✓ CL ✓

Table 1. Summary of ordering constraints in the 𝑃𝑥86𝑠𝑖𝑚
model from Raad et al. [64] A ✓ indicates that the order
between the two instructions is preserved, a X indicates that
the two instructions can be reordered, and a CL indicates
that the order is preserved only if they both operate on the
same cache line.

the CXL protocol to define a memory poisoning mechanism
that returns a poison value when a host reads from a cache
line owned by another failed host [37]. Our tool supports
memory poisoning as an option, but we do not use it for our
evaluation as it is a drastically different failure model than
the familiar one from PM, and currently there are no appli-
cations designed to work with memory poisoning enabled.
Like for persistent memory, stores to CXL memory are

volatile when in the cache, and may be lost if the writing
machine fails in a way not handled by global persistent flush.
The stores must be written back to memory to remain visible
to other processors after the writing processor crashes. A
crucial difference from persistent memory is that the failure
of individual machines running a CXL memory program
only causes data loss in their own caches, while the caches
of other machines are unaffected. Write backs from the cache
to memory happen when the cache needs more space for
later stores and do not follow any specific order. Therefore,
explicit flush instructions are often needed to ensure crash
consistency.
Global Persistent Flush: In the case of a host failure, CXL
provides a global persistent flush (GPF) [66] mechanism that
flushes the contents of a host’s cache to shared memory. GPF
primarily addresses data losses due to power outages; GPF
requires a power store such as a battery or power supply
capacitor to keep a system powered long enough to flush
its caches. GPF relies on many components of a machine
to function correctly. If a machine fails due to a component
GPF requires for its function such as a broken motherboard,
failed CPU, power supplies, CXL transceiver, CXL cable, etc.,
GPF may not successfully flush the caches. It is also not clear
how universal support for GPF will be in CXL systems due to
the energy store requirement. This work focuses specifically
on failure scenarios that cannot be handled by GPF, and
therefore we assume that failed machines do not write their
cache back.
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3 System Overview
CXLMC is designed to find crash consistency bugs in CXL
shared memory programs written by exhaustively exploring
different partial failure scenarios. Programs are first instru-
mented by an LLVM [26] pass that replaces all memory ac-
cesses, fences, and flushes with calls into CXLMC. CXLMC
then launches the instrumented programs using separate
processes to simulate different machines. Each process has
an independent address spaces and emulates CXL shared
memory. Each CXLMC process can have multiple threads,
simulating multiple threads running on each CXL machine.
CXLMC also emulates other aspects of the memory model
such as store buffers and machine local caching, and inter-
cepts methods from the pthread library to have control over
multithreading.

3.1 System Configuration
CXLMC assumes a CXL system configuration consisting of
multiple x86 compute nodes sharing a single memory device.
It is conceptually straightforward to extend this model to
allow sharing multiple memory devices and/or to allow the
compute nodes to share their local memory. The key differ-
ence with a system in which a compute node shares its local
memory is that a failure of that compute node would result in
the complete loss of access to that memory region. Although
our core algorithms could easily support such systems, we
did not explore this scenario because the benchmark pro-
grams we could find could not tolerate the complete loss of
a region of memory. We do not currently consider the case
of any memory device being persistent as this may require
new x86 instructions to flush a remote cache.

3.2 Correctness, Soundness, and Completeness
CXLMC exposes critical bugs that lead to unintended crashes
or assertion failures, and provides the soundness guarantee
that any execution it finds is feasible under the memory and
failure model. This implies that all bugs it finds are actual
bugs. Note that some bugs might not be realizable for specific
processor models, due to factors such as eviction policies that
are not guaranteed by the architectural model and thus not
modeled by CXLMC. These are still bugs that should be fixed
as processor upgrades or other small system changes may
make them realizable. CXLMC also does not check a specific
correctness condition beyond whether the program crashes
or an existing assertion fails, though CXLMC is designed
to support extensions to check properties such as robust-
ness [31]. In terms of completeness, CXLMC is guaranteed
to enumerate at least one execution from every equivalence
class under reads-from equivalence [15] for a fixed schedule.
CXLMC only model checks non-determinism from crashes
and does not model check non-determinism from concur-
rency in order to scale to longer executions. CXLMC can
generate multiple different schedules using different random

seeds. Performance characteristics are not considered, as it
is only intended as a tool for checking correctness.
Naively enumerating all post-crash states will result in

an exponential blow-up of the state space. This approach
was taken by the Yat [47] tool for model checking persistent
memory crashes. For CXL programs with partial failures, the
eager enumeration of post-failure executions would be even
more intractable than for persistent memory programs, as at
every step of the execution all subsets of currently running
processes are subject to failures. Jaaru [33] developed a solu-
tion to this problem for PM programs using the technique of
cache line constraint refinement that constructs post-failure
executions lazily based on constraints on the possible time
interval of pre-failure cache line write backs. Alternatively,
it could be understood as a form of dynamic partial order
reduction (DPOR) [25] that only explores executions with dif-
ferences observable through post-failure loads. It efficiently
verified programs that use the commit store pattern, where a
commit store makes a group of prior stores observable. This
pattern is valid for CXL programs, and cache line refinement
ensures only two executions are explored for each commit
store pattern—one with a failure before the commit store
is written back, and one that does not fail. We adapt this
technique in CXLMC, which requires a novel formulation to
address the challenges of partial failures.

3.3 Constraint Refinement
The post-failure state of a cache line is determined by the
time it was last written back to DRAM before the failure—all
stores to the cache line ordered before the last write back
are persisted, and all stores to the cache line ordered after
are lost. Explicit flush instructions such as clflush, and
for CXL shared memory, remote loads from the same cache
line establish a lower bound on the time of the last write
back. However, this information is not sufficient. Suppose
that when a machine 𝐴 crashes each of its 𝑚 cache lines
has 𝑛 potentially unpersisted stores, i.e., stores that come
after the lower bound for its last flush computed based on
pre-crash information, the possible number of post-crash
states of its cache lines would be 𝑂 ((𝑛 + 1)𝑚), since the last
flush for each cache line could be at any point within the
sequences of 𝑛 stores. Recall that a given CXL machine may
have multiple threads; CXLMC implements this by running
multiple threads within each process. Note that a local load
from another thread on the same machine that performed
a store does not force the store to be written back and thus
does not refine the cache line constraint.
The classic DPOR formulation pioneered the approach

of identifying backtracking points as the execution pro-
gresses [25]. The same idea is applicable for enumerating
the possible time of cache line write backs, which gives rise
to cache line constraint refinement. In cache line constraint
refinement, we keep track of a possible time interval for
the last flush of each cache line, which we call cache line
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constraints, and refine it throughout the execution. The set
of time intervals encodes an equivalence class of states if a
crash were to occur, rather than a single state. A post-crash
load from the cache line is then able to lazily determine its
value based on the cache line constraints.

To illustrate, consider a program with two processes 𝐴
and 𝐵 that share two CXL memory locations x and y on the
same cache line. As shown in Figure 2, Machine A stores
y=1, x=2, executes a clflush, and then stores y=3, x=4, y=5,
and x=6 before crashing due to a machine failure. Suppose
that the store y=1 is at timestamp 1, then we can infer that
the cache line constraint is [3,∞) from the position of the
only clflush instruction on the timeline.

Machine A

y=1 x=2 clflush y=3 x=4 y=5 x=6
X

Machine
Failure

Most recent write back

Figure 2. Execution of a CXL shared memory program on
machine A. Assume x and y share the same cache line and
do not overlap.
Machine A

y=1 x=2 y=3 x=4 y=5 x=6
X

Machine
Failure

Most recent write back
Machine B

r2=x // 2 r1=y // 3

Figure 3. Execution of a CXL shared memory program on
machines A and B. Assume x and y share the same cache
line and do not overlap.
Machine A

y=1 x=2 y=3 x=4
X

Machine
Failure

Most recent write back
before A’s failureMachine B

y=5 clflush
X

Machine
Failure

Most recent write back
before B’s failureMachine C

r1=x // 2

Figure 4. Execution of a CXL shared memory program on
machines A, B, and C. Assume x and y share the same cache
line.

When multiple machines communicate through CXL
memory, loads from a machine can cause stores to be per-
sisted. In Figure 3, Machine B loads the value 2 from x that
was written by machine A before it failed. This writes back
the cache line due to CXL’s cache coherence and updates
the constraint to [2,∞) as shown by the dotted red interval.

When machine B loads from y following machine A’s failure,
the loaded value could be any value that y holds during the
current cache line constraint interval—in this case, y=1, y=3
or y=5, and we can further refine the cache line constraint
based on the load result. Suppose that the result is 3 as shown
in the figure, then the most recent cache line write back must
have occurred after y=3 but before y=5, and the constraint is
updated accordingly to [4, 7), shown as the solid red interval.
This constraint further limits the results of future loads from
the cache line. If machine B were to load from y again at this
point, the only possible value would be y=3, which ensures
the consistency of consecutive loads from the same location.
If it were to load from x, the possible values are x=2 and x=4.
The same procedure extends to the case of multiple par-

tial failures, with extra attention needed to handle the con-
straints for each failed machine separately. For example, con-
sider a program with machines 𝐴, 𝐵, and 𝐶 sharing memory
locations x and y as shown in Figure 4. Machine A executes
the stores y=1, x=2, y=3, and x=4 before failing, and then
machine B executes y=5 and clflush before failing. At this
point, the cache line constraint for A is the default [0,∞) ,
and the constraint for B is [7,∞) as machine B executes a
clflush at timestamp 7. When machine C reads from x after
both𝐴 and 𝐵 have failed, it consults the cache line constraint
for A as x’s most recent stores x=2 and x=4 are from 𝐴, and
whether they are persisted depends on the cache line write
backs before A’s failure. When the value turns out to be 2,
the cache line constraint for𝐴 is updated to [2, 4). If machine
𝐶 were to load from y instead, the cache line constraint for 𝐵
would be used, producing the only possible value y=5. In the
general case with 𝑘 machine failures, the system needs to
keep track of at most 𝑘 cache line constraints per cache line,
one for each failed machine. The number could be less than
𝑘 because a cache line might not be written back between
two failures, and the failed machines would then share the
same constraint.

4 Algorithm
In this section, we present the model checking algorithm
used by CXLMC. Differences from Jaaru’s algorithm are
indicated by shaded boxes. We first establish the following
notations to be used in the presentation:

• 𝜎 is a sequence number uniquely assigned to each
store, clflushopt, and sfence based on the order
they take effect on the cache.

• 𝜎curr is the global sequence number to be assigned to
the next instruction that takes effect on the cache. It
also serves as a timestamp in the model checker.

• 𝜏 ∈ T denotes a thread. It is assumed to be the current
thread executing the code unless explicitly defined
elsewhere.

• 𝜇 ∈ M denotes a machine.
• 𝜇curr denotes the current machine.
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• Φcurr denotes the current set of failed machines. We
will also refer to this as the current failure set.

• 𝜇.cacheline maps a cache line address to the con-
straint for the most recent write back of the cache line
before 𝜇’s failure. If 𝜇 is a live machine, then it maps to
the constraint for the current most recent write back
of the cache line.

• queue maps an address addr to a sequence of triplets
of the form ⟨val, 𝜎, 𝜇⟩. Each triplet represents a store
that contains its value, its sequence number, and the
machine that issued it. The stores in each sequence are
ordered from earliest to latest by sequence numbers.

• 𝑆𝜏 denotes a sequence for each thread 𝜏 that contains
its store, sfence, and clflush instructions that have
not taken effect in the cache.

• 𝐹𝜏 denotes a sequence for each thread 𝜏 that contains
its clflushopt instructions that have not taken effect
in the cache.

• 𝑡𝜏 denotes the time of the last sfence committed by
thread 𝜏

• 𝑡𝜏,CacheID(curr) denotes the time of the last store or
clflush committed by 𝜏 .

4.1 Memory Model
CXLMC adopts Jaaru’s approach of emulating the target
memory model using a store buffer 𝑆𝜏 , a per thread 𝜏 flush
buffer 𝐹𝜏 to reorder instructions, and a map queue to hold
globally visible stores. As machines have independent fail-
ure domains, cache line constraints are associated with each
machine 𝜇, rather than an execution epoch as required for
persistent memory, while the other components remain un-
changed.
The x86 memory model maintains the order of store,

sfence, and clflush instructions executed by a thread.
A clflushopt instruction has weaker ordering properties,
for example, it may be reordered across later clflushopt,
clflush, and store instructions, but not across later
sfence instructions. To implement these ordering properties,
CXLMC inserts these instructions into a per-thread store
buffer 𝑆𝜏 , and these operations do not take effect on the
cache until they are removed from the store buffer in a FIFO
fashion. To implement the weaker ordering property of the
clflushopt instruction, it is inserted into the flush buffer
𝐹𝜏 after being removed from the store buffer 𝑆𝜏 , so that it
may be reordered with later stores and clflushopt instruc-
tions. Reorderings with earlier clflushopt instructions and
stores on different cache lines are implemented by updating
the beginning of the cache line constraint upon exit from
𝐹𝜏 . Algorithm 1 presents pseudocode for the execution of
instructions.

The first four functions simply enqueue their instructions
into the store buffer 𝑆𝜏 along with other relevant data to
simulate reordering with later instructions, while mfence
takes effect immediately in Exec_MFENCE. It empties 𝐹𝜏

Algorithm 1 Algorithm for executing instructions
1: function Exec_Store(addr, val)
2: Enqueue ⟨store, addr, val⟩ into 𝑆𝜏 .
3: function Exec_CLFLUSH(addr)
4: Enqueue ⟨clflush, addr⟩ into 𝑆𝜏 .
5: function Exec_CLFLUSHOPT(addr)
6: Enqueue ⟨clflushopt, addr, 𝜎curr⟩ into 𝑆𝜏 .
7: function Exec_SFENCE
8: Enqueue ⟨sfence⟩ into 𝑆𝜏 .
9: function Exec_MFENCE
10: Commit all entries in 𝑆𝜏 .
11: Flush 𝐹𝜏 .

and 𝑆𝜏 , serializing all memory and cache instructions issued
by the current thread. The enqueued instructions then wait
to be processed by the commit functions in Algorithm 2.

Algorithm 2 Algorithm for committing instructions
1: function Commit_SB(store, addr, val)
2: 𝜎curr := 𝜎curr + 1
3: Enqueue ⟨val, 𝜎curr, 𝜇curr⟩ into queue(addr).
4: 𝑡𝜏,CacheID(addr) := 𝜎curr
5: function Commit_SB(clflush, addr)
6: 𝜎curr := 𝜎curr + 1
7: cl := 𝜇curr.cacheline(addr)
8: cl.begin := 𝜎curr
9: 𝑡𝜏,CacheID(addr) := 𝜎curr
10: function Commit_SB(clflushopt, addr, 𝜎)
11: Enqueue ⟨addr, max(𝜎, 𝑡𝜏,CacheID(addr) , 𝑡𝜏 )⟩ into 𝐹𝜏 .
12: function Commit_SB(sfence)
13: 𝜎curr := 𝜎curr + 1
14: Flush 𝐹𝜏
15: 𝑡𝜏 := 𝜎curr
16: function Commit_FB(addr, 𝜎)
17: cl := 𝜇curr.cacheline(addr)
18: cl.begin := max(cl.begin, 𝜎)

We next discuss the functions that commit operations
from the store buffer that appear in Algorithm 2. We use
shaded blocks to indicate how CXLMC’s algorithm differs
from Jaaru’s algorithm. The commit function for stores,
Commit_SB(store, addr, val), increments the current se-
quence number and inserts the store with the sequence num-
ber into queue(addr). At this point, the store is considered
to be in the cache and is visible globally. It also updates
𝑡𝜏,CacheID(addr) that will be used to prevent the reordering of
later clflushopt to the same cache line.
The commit function for clflush,

Commit_SB(clflush, addr), increments the sequence
number and sets it as the lower bound of the current
cache line constraint. This signifies that the cache line is
written back to memory at this timestamp. It also updates
𝑡𝜏,CacheID(addr) to the current sequence number.

As mentioned previously, clflushopt’s weaker
ordering constraints require special treatment in
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Commit_SB(clflushopt, addr, 𝜎). A clflushopt can
reorder with earlier stores and clflush instructions to
different cache lines, we determine the earliest timestamp
that clflushopt could take effect by reordering with earlier
stores and clflush committed from 𝑆𝜏 as the maximum
of the following timestamps: (1) 𝜎 , the timestamp when
clflushoptwas executed, (2) 𝑡𝜏,CacheID(addr) , the last store or
clflush instruction committed by 𝜏 to the same cache line,
and (3) 𝑡𝜏 the last sfence committed by 𝜏 . This timestamp is
inserted into the flush buffer 𝐹𝜏 along with the flush address,
which simulates the clflushopt’s reordering with later
instructions.
The commit function for sfence, Commit_SB(sfence),

empties 𝐹𝜏 to serialize previous clflushopt instructions ex-
ecuted by 𝜏 , and updates 𝑡𝜏 with an incremented current se-
quence number to prevent reordering with later clflushopt
instructions.

Finally, when a clflushopt is committed from 𝐹𝜏 , it takes
effect when the function Commit_FB(addr, 𝜎) updates the
lower bound of the cache line constraint with the timestamp
calculated in Commit_SB(clflushopt, addr, 𝜎).

4.2 Read-From Set Construction
Here, we discuss the implementation of loads in CXLMC sep-
arately, as the lazy approach shifts most of the work to load
operations. When an instrumented load calls into the model
checker, the set of all possible load results at that point is
constructed by the function BuildMayReadFrom(addr). Al-
gorithm 3 presents pseudocode for the BuildMayReadFrom
function.

Algorithm 3 CXLMC’s read-set construction algorithm

1: function ScanStores(addr,Φ, 𝜎start)
2: return {⟨val, 𝜎, 𝜇,Φ⟩ | 𝜎 ≤ 𝜎start ∧
3: queue(addr) =𝑚1 .⟨val, 𝜎, 𝜇⟩.𝑚2 ∧
4: (�⟨val′, 𝜎′, 𝜇′⟩ ∈𝑚2 .𝜇′ ∈ Φ =⇒
5: 𝜎′ ≤ 𝜇′ .cacheline(addr).begin) ∧
6: (𝜇 ∈ Φ =⇒ 𝜎 < 𝜇.cacheline(addr) .end)}
7: function BuildMayReadFrom(addr)
8: if ∃val.𝑆𝜏 = 𝑏1 .⟨addr, val⟩.𝑏2 ∧ ∀val′ .
9: ⟨addr, val′⟩ ∉ 𝑏2 then
10: return {⟨𝜇curr, 0, val,Φcurr⟩}
11: 𝑟 := ScanStores(addr,Φcurr, 𝜎curr)
12: Φnew := Φcurr
13: while ∃⟨_, 𝜎, 𝜇, _⟩ ∈ 𝑟 . 𝜇 ∉ Φnew ∧ 𝜇 ≠ 𝜇curr ∧
14: 𝜎 > 𝜇.cacheline(addr) .begin do
15: Φnew := Φnew ∪ {𝜇}
16: 𝑟 := 𝑟 ∪ ScanStores(addr,Φnew, 𝜎 − 1)
17: return 𝑟

BuildMayReadFrom serves the same purpose as the func-
tion of the same name from Jaaru [33]. We briefly summa-
rize how Jaaru constructs the read-from set for persistent

memory programs, then describe how CXLMC does the con-
struction for CXL shared memory.

For persistent memory, full-system failures divide the pro-
gram into separate executions. If there are no failures, the pro-
gram can only read from the latest store to the address. Oth-
erwise, the previous execution before the failure is searched
for a set of stores that falls in the range of the cache line
constraint of the execution. If a store in the execution occurs
before or on the beginning of its cache line constraint, it
must have been persisted and overwrites previous stores,
and the search can terminate. Otherwise, the search contin-
ues to earlier executions until some store that overwrites
previous stores is found.
ScanStores. Generalizing the set construction to CXL

memorywith per-machine failure domains, there is no longer
a notion of executions separated by failures, and the set of
failed machines, along with a timestamp for the last failure
become parameters of the search. Therefore, we present a
helper procedure ScanStores(addr,Φ, 𝜎start) that constructs
a read-from set given a fixed failure set and timestamp.
With multiple machines, stores from any live machine

overwrite previous stores, and the same is true for stores
from failed machines that must have been persisted. There-
fore, the set ScanStores(addr,Φ, 𝜎start) constructs only in-
cludes the latest store that belongs to either of these two
categories, and ignores all previous stores. A store must have
been persisted if it is from a failed machine, and its sequence
number is on or before the start of the latest cache line write
back interval before the failure, and therefore lines 4-5 cap-
ture the condition for stores that overwrite previous stores.
Additionally, stores from failed machines may have been
persisted only if their timestamps are earlier than the latest
possible write back time before the failure, which is checked
by line 6.
In other words, ScanStores(addr,Φ, 𝜎start) searches in-

side queue(addr) starting from the store at 𝜎start and moving
earlier in time. The search does not terminate until it finds
either a store from a live machine or a store that must have
been persisted, and adds the other stores it encounters to the
set if they satisfy the cache line end condition.

BuildMayReadFrom. We next discuss CXLMC’s Build-
MayReadFrom procedure. For a load from addr, lines 8-10
first implement local bypassing in the TSO model by search-
ing the local store buffer for the latest store with a matching
address. The placeholder sequence number 0 is used as these
stores that have not reached the cache and thus are not yet as-
signed sequence numbers. The function then constructs the
read-from set 𝑟 by calling the function ScanStores in line 11
with the current set of failed machines Φcurr and the current
sequence number 𝜎curr. Using 𝜎curr in this call lets the search
in ScanStores start from the latest store in queue(addr).
Next, the function initializes a failure set Φnew with Φcurr,

to be updated in the loop from lines 13-16. The loop continues
as long as the read-from set 𝑟 contains a store that may not
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have been written back if the issuing node were to fail, i.e., its
sequence number 𝜎 is later than the start of the node’s cache
line constraint. Such a store must be unique if found, since
𝑟 contains at most one store from a live machine. Inside
the loop, the function then tries to inject a failure of the
machine 𝜇 by adding 𝜇 to Φnew in line 15, and expands the
set of candidate stores by searching through stores before 𝜎
with a call to ScanStores(Φnew, 𝜎 − 1) in line 16.

The motivation for injecting failures here is that a store
from a different live machine overwrites earlier stores, but
the overwriting is reverted if the machine fails and the over-
writing store is not persisted. On the other hand, if this store
is read by a remote load, earlier stores will be permanently
overwritten as the cache line must have been written back.
To ensure the exhaustiveness of the read-from set, we have
to consider the possibility that the writing machine fails be-
fore the load, and we repeatedly expand the set 𝑟 as long
as a store overwriting other stores could be reverted. This
makes whether a store in 𝑟 may be read depend on which
machines have failed, and therefore we include the failure
set along with each candidate store in line 2 and line 10 to
tell the model checker which machines to fail when a store
is chosen.

When the loop terminates, the set 𝑟 will contain all possi-
ble stores that the load may read from. Lastly, the read-from
set 𝑟 is returned in line 17. This function runs in time linear
in the size of 𝑆𝜏 and queue(addr), as each store in them only
needs to be examined at most once.
Side Note. Memory poisoning can be implemented by

performing the following checks after local bypassing in
lines 8-10. If the latest store in queue to any location on
the same cache line as addr is later than the cache line end
constraint for their machine, the cache line must be poisoned.
Otherwise if any such store is between the beginning and
the end of the constraint, the model checker examines the
latest one and has a choice of either making the cache line
poisoned and move the cache line end constraint before the
time of the store, or not making the cache line poisoned
and move the cache line begin constraint past the time of
the store. When a machine reads a poisoned cache line, the
model checker may simply trigger a runtime exception.
DoRead. CXLMC uses a back-tracking based search to

select a store from the output of BuildMayReadFrom to
read from. Once this store is selected, the procedure DoRead
in Algorithm 4 updates the state of the model checker to
reflect this choice. First, in lines 4-5, any new addition 𝜇′

to the updated failure set Φ is added to the current failure
set Φcurr by calling the function Fail, and CXLMC halts the
execution of 𝜇′. Then, the function picks out the relevant
cache line constraint based on addr and the machine 𝜇 of the
store. It considers two cases: (1) If the machine has failed, the
cache line constraint is updated to be between the sequence
number of the chosen store and the next store in the cache to
addr in lines 7-10, essentially locking into the chosen store

as the only one that may be loaded in the future among
the stores from 𝜇 to addr. (2) If the store comes from a live
machine that is different from the current one, the cache
coherence of CXL memory requires the cache line to be
written back to memory after the store, and the start of the
cache line constraint is updated to be at least the sequence
number of the store in lines 11-12.

Algorithm 4 Algorithm for DoRead

1: function Fail(𝜇)
2: Stop 𝜇′ and add it to Φcurr

3: function DoRead(addr, val, 𝜎, 𝜇,Φ)
4: for 𝜇′ ∈ Φ\Φcurr do
5: Fail(𝜇′)
6: cl := 𝜇.cacheline(addr)
7: if 𝜇 ∈ Φcurr then
8: cl.begin := max(cl.begin, 𝜎)
9: if ∃⟨val′, 𝜎′, 𝜇′, _⟩ such that queue(addr) =

𝑚1 .⟨val, 𝜎, 𝜇⟩.⟨val′, 𝜎′, 𝜇′⟩.𝑚2 then
10: cl.end := min(cl.end, 𝜎′)
11: else if 𝜇 ≠ 𝜇curr then
12: cl.begin := max(cl.begin, 𝜎)

4.3 Exploration
Given the ability to construct read-from sets from the previ-
ous section, we present the exploration algorithm in Algo-
rithm 5.
The Explore procedure searches through the space of

possible executions for the program. The Explore procedure
takes in an execution 𝑒 and continues recursively as long
as the set of enabled threads is not empty. In each iteration,
it may choose to commit from a store buffer in line 6 by
picking a thread with a non-empty store buffer and commits
the head of the store buffer. The commit is processed by one
of the commit functions from Algorithm 2. Otherwise, the
model picks any enabled thread and executes its next action.
For a load action, the algorithm builds the read-from set with
BuildMayReadFrom and continues after loading from each
possible store in turn with DoRead in lines 10-13, while the
other actions are processed by one of the execute functions
from Algorithm 1.

A key difference between CXLMC and Jaaru’s exploration
algorithms lies in the failure injection policy from the shaded
block on line 16, to account for the fact that machines now
fail independently. The failure injection proceeds as follows:
if the next action increments the start of a cache line con-
straint past a store by a live machine 𝜇, CXLMC injects the
failure of 𝜇, as this increment reduces the set of possible
post-failure load results from that address in the future. Such
an instruction may only be a flush. While loads may also
change cache line constraints, they are handled by the shaded
block from 10, and the failure injection takes place inside
BuildMayReadFrom and DoRead as previously explained.
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Algorithm 5 Algorithm for Explore
1: function Explore(𝑒)
2: if 𝑒.enabled is empty then
3: return
4: if choose to commit then
5: pick any thread 𝜏 with non-empty store buffer 𝑆𝜏
6: commit head ℎ of 𝑆𝜏
7: Explore(𝑒)
8: else
9: pick any thread 𝜏 ∈ 𝑒.enabled
10: if next action 𝑎 of 𝜏 is a load to addr then
11: rfset := BuildMayReadFrom(addr)
12: for ⟨val, 𝜎, 𝜇,Φ⟩ ∈ rfset do
13: Explore(𝑒.DoRead(val, 𝜎, 𝜇,Φ))
14: else
15: Explore(𝑒.executeAction(𝑎))
16: if 𝑎 is a flush that increments a cache line constraint

begin past a store from 𝜇 ∉ Φcurr then
17: Explore(𝑒.Fail(𝜇))

4.4 Atomic Sequences
Locked atomic instructions such as compare-and-swap (CAS)
and atomic exchange have fence-like semantics in x86. They
are equivalent to the sequence mfence, load, store, and
mfence. and CXLMC implements them by executing this
sequence atomically.

The problem of mixed sized accesses is handled in a simi-
lar manner. In the general case, loads and stores may have
multiple sizes, and loads may read from multiple stores that
overlap with its range. For example, in C/C++, a 64-bit load
of a struct with two 32-bit fields may read from two stores,
one updating each of the fields. CXLMC executes each multi-
byte load as a sequence of single byte loads atomically and
returns the concatenated result while carefully ensuring the
correct semantics for multi-byte atomics stores.

4.5 Optimization
As programs perform loads frequently, we observed a signif-
icant overhead from constructing the entire read-from set
on every load. Even for small read-from sets, maintaining a
container data structure incurs overhead, especially when
each element in the sets contains a separate machine fail-
ure set. Therefore, we take advantage of our decision point
mechanism, which will be explained in Section 5, to lazily
search for elements in the read-from set.
Each time a candidate store is found by the search, we

insert a binary decision point that decides whether to choose
this store immediately and return, or to ignore it and con-
tinue searching. This decision point ensures that a different
store will be chosen in the next execution, turning the n-ary
choice among elements of the read-from set into a series of
binary choices, and eventually every store in a read-from

set will be chosen once. As we now only search for one can-
didate store for each load, there is no longer a need for a
container to hold the read-from set.
Additionally, this frees us from having to maintain mul-

tiple versions of the failure set, eliminating many copy and
allocation operations. Now the algorithm only needs to up-
date a single machine failure set corresponding to the store
to be returned.

This is an alternative implementation of set construction
that was not used by Jaaru. It might also improve the per-
formance of Jaaru, if retrofitted, but the improvements will
likely be less significant as failure sets are not needed for
full-system failures.

4.6 Novelty
CXLMC’s model checking algorithm presented above gener-
alizes Jaaru’s [33] algorithm from a full-system failure model
to a partial failure model. A full-system failure model di-
vides a single run of a model checker into multiple failed
executions preceding the current execution with no over-
lap. A partial failure model is more complicated; there is a
single execution with individual machine failures at vari-
ous times, which means: (1) Different machines may impose
constraints on the same cache line, requiring generalizing
the constraint representation. (2) A load at any point may
encounter stores from live machines interleaved with those
from failed machines, which must be handled by our read-
from set construction. (3) When processing a load under
CXL, CXLMC must consider whether to inject a machine
failure to allow reading from additional stores. (4) Due to the
coherence mechanism, a remote load from a store effectively
persists that store, requiring updates to the algorithm. These
do not have an equivalent in the PM setting. Another ma-
jor difference with prior work on persistent memory model
checking is that CXLMC adds support for multi-process exe-
cution and synchronization between processes. This requires
significant changes to the model checker’s design.
As such, CXLMC’s algorithm achieves the same goal as

Jaaru’s, but in the setting of a distributed system with par-
tial failures. Compared to tools that inject failures in dis-
tributed systems [23, 76, 81], CXLMC differs in that it simu-
lates CXL shared memory’s failure model, and employs an
exploration strategy suitable for this purpose. It performs a
form of DPOR [25] that identifies non-commutative cache
line write backs and failure injection sites based on cache
line constraints, and explores all equivalent classes of exe-
cutions of a CXL shared memory program under all partial
failure scenarios and a fixed thread interleaving.
The algorithm can also explore alternative interleavings

for fuzzing purposes by varying the thread selection policy.
Efficient exploration of all possible failure scenarios and
thread interleavings remains an open problem, even for the
more limited full-system failure model due to the very large
number of executions.
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5 Implementation
This section describes the implementation of CXLMC. CXL
program are compiled using our LLVM compiler pass to
instrument all memory instructions, both atomic and non-
atomic, along with fence and flush instructions. These pro-
grams are then compiled into dynamic libraries to be loaded
by CXLMC. The shared memory is first allocated and ini-
tialized, and then any number of user programs can be
loaded and forked, which ensures the shared memory space
is mapped to the same address in all forked processes. The
shared memory space holds all of the model checker data,
scheduler and thread data, along with the simulated CXL
memory.

In order to deterministically replay the program each time
CXLMC is run, a scheduler controls which thread is running.
Multithreading within a process is supported by context
switching using the ucontext library when the process is
currently scheduled to run. Processes that are not scheduled
to run busy wait in a loop. If the number of processes exceeds
the number of cores, CXLMC also supports synchronization
through futexes. At the end of each model checker run, the
last process to complete performs cleanup of model checker
data, and signals all other processes to re-execute if there
are more executions to explore.

One problem that may arise from emulating threads with
contexts is TLS (thread local storage). When the user pro-
gram creates a thread, a real thread is created and the pointer
to its TLS space is taken from the %fs register which is re-
stored when a context switch occurs.

In the case of programs that use mutexes from the pthread
library, we have modified their behavior so that if the process
that acquired the mutex terminates, the mutex will be auto-
matically released, which is one of the assumptions made by
the authors of RECIPE [49]. The mutex also has an API call
that returns whether a mutex was released by its owner or
because its owner failed. This allows applications to handle
cases where the mutex and its protected data are affected by
partial failures of remote nodes that occurred after recovery
has begun.
We store each decision made in a node stack that repre-

sents a depth-first search of a decision tree. Once an exe-
cution completes, the next execution explores a different
path using the node stack to determine which decisions have
already been made. Each possible failure injection point uses
a binary decision point to determine whether the crash actu-
ally occurs in that execution.

6 Evaluation
In this section, we evaluate CXLMC’s ability to find bugs in
benchmarks CXL programs, along with its performance. We
report our system configuration in Table 2.

CPU 8-core 3.70GHz Intel® Xeon® CPU E3-1245 v6
Memory 32 GB DDR4 2133 MHz

OS Ubuntu 20.04.6 LTS
Compiler clang version 20.0.0

Table 2. System configuration.

There are limited applications available for CXL shared
memory at this point, as CXL shared memory is not yet com-
mercially available. To evaluate CXLMC, we found bench-
marks from two sources. First, we used the benchmarks
from the RECIPE [49] benchmark suite of persistent mem-
ory index structures, making modifications as necessary to
support shared memory. This set of benchmarks was com-
monly used in the evaluation of most persistent memory
bug-finding tools. Second, we used benchmarks from the
CXL-SHM tool [85].
The RECIPE benchmarks are a set of concurrent and

crash-consistent indexes for persistent memory. LLVM could
not compile P-HOT from RECIPE, so it is not included in
our benchmarks. Our evaluation includes the remaining six
benchmarks from RECIPE. Since the RECIPE data structures
were not intended to be used in CXL programs, some modi-
fications were required. In P-ART, locks do not use mutexes
and instead used a bit in a version field. This was modified to
reserve some of the bits to hold the id of the process owning
the lock in order to unlock if the process’s machine fails. In
persistent memory programs, this is typically done in a re-
covery procedure, which cannot run in CXL programs since
partial crashes do not result in a full restart of the system.
We also used two benchmarks from CXL-SHM [85], a

memory allocator for CXL memory that operates under a
partial failure model.
We did not use PMDK [20] benchmarks as Jaaru did be-

cause PMDK only supports a full-system failure model rather
than CXL’s partial failure model, and it is difficult to adapt
PMDK to a partial failure model.

While similar bug detection tools have been evaluated on
Redis and Memcached, these benchmarks only support a full-
system failuremodel. Redis uses PMDK transactions and thus
the same problem as the PMDK benchmarks. Memcached
was also not included as significant development effort would
be required to adapt it to support a partial failure model.

6.1 Bug Detection
We begin with the RECIPE benchmarks. We run each bench-
mark with 2 processes and varying number of keys and
threads. We were able to find 22 bugs, 7 of which are new.
We report these bugs in Table 3. Many of these bugs were pre-
viously found by Jaaru and were caused by missing flushes
that resulted in segmentation faults or assertion failures.
Once we found a bug, we corrected the implementation and
reran the program until no more bugs were found.
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We have made some modifications to these benchmarks
prior to searching for bugs. First, API calls that allocated
memory for persistent data were replaced with API calls to
CXL memory allocators. Second, the original benchmarks
only checked for the presence of inserted keys in the post-
crash execution. Since this does not work in a partial-failure
model, we check for the presence of inserted keys in the
remaining threads after keys are inserted.
We next discuss the new bugs we found. Bug 4 in

FAST_FAIR is a result of incorrect padding in the header
class. The header class consists of fields totaling to 43 bytes
along with 5 bytes of padding. However, one of the fields
is a 2-byte integer that would not aligned if packed with
the previous fields, resulting in an extra byte of padding.
This caused some of the entries in the record array to be on
multiple cache lines, resulting in partial flushes. It is possible
that Jaaru did not find this bug since it may require a spe-
cific memory configuration to occur. Bug 7 results when the
process crashes in the middle of inserting an entry in the
middle of the records. Doing so requires that each entry be
moved into the next slot and terminating in the middle of
this results in an entry being listed twice. This bug may have
been missed by Jaaru due to differences in thread schedules.
Bug 10 in P-ART was caused by atomicity violations. In

N4, N16, and N48 nodes, there are two 4-byte fields used for
counting: one used for the number of child nodes currently
in the array and one for the largest number of child nodes
that were previously in the array. When a child is inserted,
these fields are incremented as the commit for the operation.
However, these fields were not incremented atomically, re-
sulting in some logic errors if only one field was able to be
persisted. Bug 11 was caused by searching for children in the
full array of N4 rather than only checking up to the number
of nodes. This resulted in a logic error if the process crashed
after a child was inserted into N4 but before the counter
fields are incremented to commit the operation. In N16, the
object consists of an 8-byte prefix, two 4-byte counters as
previously mentioned, followed by an array of sixteen 1-byte
keys and an array of sixteen child pointers. When inserting a
child node to the N16, the child pointer and the incremented
counters are flushed, but the key is incorrectly assumed to
be flushed along with the counters. However, it is possible
for the N16 to lie in between two cache lines and for the
key array to be separated from the counters, resulting in
Bug 12. Bug 13 occurs when a node needs to be split and
the process crashes in the middle. The prefix of the node is
modified after the parents have been modified to point to
the split nodes. In a non-crashing scenario, the prefix can-
not be read until the operation is completed as a result of
the locks on the nodes that were acquired. However, if the
process crashes in the middle of the operation, the locks will
be released before the prefix can be modified, resulting in
incorrect results when searching through the tree. We found
these bugs when running the benchmarks with 48, 50, 128,

# Benchmark Type of Bug
1 CCEH Missing flush in CCEH constructor
2 CCEH Missing flush in CCEH constructor
3 CCEH Missing flush in CCEH constructor
4 FAST_FAIR* Incorrect padding in header
5 FAST_FAIR Missing flush in header constructor
6 FAST_FAIR Missing flush in entry constructor
7 FAST_FAIR* Missing failure detection in key insertion
8 FAST_FAIR Missing flush in btree constructor
9 P-ART Missing flush during key creation
10 P-ART* Count fields not updated atomically
11 P-ART* Missing bounds check for N4 children
12 P-ART* Missing flush in N16 insertion
13 P-ART* Node prefix not updated atomically
14 P-BwTree Missing flush of GC metadata pointer
15 P-BwTree Missing flush of GC metadata
16 P-BwTree Missing flush in AllocationMeta constructor
17 P-BwTree Missing flush in allocation
18 P-BwTree Missing flush in BwTree constructor
19 P-CLHT Missing flush in clht constructor
20 P-CLHT Missing flush for hashtable object
21 P-CLHT Missing flush for hashtable array
22 P-MassTree* Missing failure detection in key insertion

Table 3. Bugs found in RECIPE. Bugs with a * are new.

and 256 keys respectively. These bugs may also be triggered
with full-system failures, and the reason why they were not
previously found by Jaaru might be because its evaluation
used smaller numbers of keys. Additionally, P-ART does in-
clude a recovery procedure that nullifies values in the child
arrays if the counters failed to persist. However the recovery
procedures only run at the start of a post-crash execution in
a full system failure model.

Bug 22 from P-MassTree can only occur in a partial failure
model, which is why it was not found previously. Nodes
are checked if recovery is needed during traversal, which
only covers full system crashes. Normally, locks are used to
prevent the thread from accessing the node while another
thread is modifying it. The recovery process checks the state
of the locks to determine if a crash has occurred. However,
it is possible that after traversal, another process crashes
leaving the node in an inconsistent state, causing an error.
In this case, our lock API can determine if the lock was
released due to a process failure, and if so, part of the recovery
procedure can be rerun to fix the inconsistency.
We next discuss the 2 new bugs found in the CXL-SHM

benchmarks. We ran each benchmark together with the pro-
vided recovery_check program in separate processes. The
recovery_check program performs partial failure recovery
and checks for unfreed memory allocated by failed processes.
For bug 1, we found that the recovery procedure was not
able to correctly garbage-collect a crashed kv program. Com-
ments in the code suggest that recovery for kv data is yet
to be implemented due to an ABA problem. For bug 2, we
ran the failure monitor continuously as described in the pa-
per [85], together with the stress_test benchmark. We
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# Benchmark Type of Bug
1 kv* Unimplemented free procedure
2 test_stress* Divide-by-zero error

Table 4. Bugs found in CXL-SHM benchmarks. Bugs with a
* are new bugs.

found that when stress_test fails in the middle of a moni-
tor loop, a struct holding page metadata may be zeroed in
the later part of the loop iteration, and a field of the zeroed
struct may be used in the next loop iteration, resulting in a
division by zero error.
We have reported the new bugs found in RECIPE and

the CXL-SHM benchmarks to their authors. The authors
of CXL-SHM have confirmed that the verification failure is
due to missing code and the divide-by-zero error is a bug
in their benchmarks and encouraged us to contribute to the
repository. We have not yet received a response from the
authors of RECIPE.

6.2 GPF Mode
To further evaluate the effects of Global Persistent Flush
(GPF), we run the benchmarks with a GPFmode that assumes
GPF always succeeds. This implies that no cached value
is lost after crashes, and executions follow a regular TSO
memory model even in the presence of machine failures.
Failures are injected before flush instructions as before to
closely match our non-GPF mode, though flushes have no
effects when GPF succeeds. Under this setting, none of the
RECIPE benchmark bugs in Table 3 are detectable, as they
are either triggered by the loss of a cached value alone or by
a combination of the loss of cached value and partial failures.
The two bugs from CXL-SHM were detected, as they are
caused by unexpected partial failures during recovery.

6.3 Performance
Table 5 presents the performance result of running the
RECIPE benchmarks on CXLMC, both with and without GPF
mode. We ran each RECIPE benchmark with 2 processes of
2 threads each and a total of 10 keys. The intended use of
CXLMC is to find bugs in programs. If CXLMC finds a bug,
it reports the bug and stops. The developer can then debug
and fix the bug in an iterative process until the tool reports
no more bugs found. Because of this, we measure the perfor-
mance of CXLMC on the program once all bugs have been
fixed. We were unable to fix all of the bugs that we found in
the CXL-SHM benchmarks as some of them require signifi-
cant code rewrites. As a result, we were unable to measure
the performance of CXLMC on those benchmarks. CXLMC
is the only bug checking tool for CXL programs, so there are
no comparable tools to compare against.

We compare the total number of executions with the num-
ber of failure injection points for each benchmark. This
ranges from slightly over 1 to about 20 executions per failure

Benchmarks #Execs Time #FPoints
CCEH 1097 4.31s 1058

FAST_FAIR 77 0.13s 28
P-ART 104 0.22s 92

P-BwTree 1266 5.08s 62
P-CLHT 4128 42.96s 4122

P-MassTree 20 0.03s 16
CCEHGPF 1050 4.33s 1049

FAST_FAIRGPF 24 0.12s 23
P-ARTGPF 92 0.24s 91

P-BwTreeGPF 59 0.28s 58
P-CLHTGPF 4119 44.6s 4118

P-MassTreeGPF 15 0.03s 14
Table 5. Performance Results for CXLMC. The GPF subscript
stands for GPF mode. Reported are the number of executions
(#Execs), total running time (Time), and number of failure
injection points (#FPoints)

injection point. For these benchmarks, the longest running
time is just under a minute which is reasonable for a pro-
grammer to check if a given program contains a bug.

The performance results with and without GPF mode are
similar in most cases, with only a slight decrease in the num-
ber of executions and numbers of crash injection points when
GPFmode is enabled. This is not surprising given the commit
store pattern we discussed earlier. The only exception is that
P-BwTree’s executions, numbers of crash injection points,
and running time all decreased significantly under GPF. We
observed during the evaluation that P-BwTree has a large
number of unflushed stores to its garbage collection epoch
number, because reading a stale (i.e. strictly smaller) epoch
number would not compromise the correctness of garbage
collection. Unflushed stores lead to many alternative stores
that may be read after a crash when GPF is not guaranteed
to succeed, which explains the discrepancy. Compared to P-
BwTree, unflushed stores in other benchmarks are relatively
rare.

7 Related Work
Existing work on CXL memory focuses primarily on system
support [52, 78, 85, 87], applications [36, 40, 51], and per-
formance evaluations [34, 42, 68, 70, 73, 74, 77, 84]. Wang
et al. studied the effects of CXL memory-tiering and page-
interleaving policies on HPC and LLM workloads [73] and
presented an object-based interleaving policy. Li et al. intro-
duced a performance characterization framework for CXL
memory based on analyses of 256 workloads, and devel-
oped new page-interleaving and tiering policies based on
the results [53]. Wu et al. studied the impact of CXL memory
topology on HPC and LLM workloads [77]. Wang et al. de-
veloped a benchmark suite to understand the performance of
heterogeneous CXL memory systems [74]. Tang et al. inves-
tigated the performance and cost model of ASIC-based CXL
devices [70]. Ji et al. focused on CXL type-2 devices along
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with their applications in Linux memory optimization [42].
Yang et al. studied the performance of CXL-tiered memory
at the system and architectural level [84] There has been a
body of work that discusses how CXL shared memory can be
used to optimize distributed processing of memory-intensive
workloads [3, 17, 19, 77, 78].

In comparison, work that focuses on correctness has been
scarce, with the exception of CXL0 [10], an abstract program-
ming model for the CXL protocol, and Tan et al’s effort [69]
on formally verifying cache coherence of the CXL.cache pro-
tocol, which are complementary to our tool that targets CXL
memory software.

Several recent works [13, 17, 41, 78, 80] discuss emerging
applications of cache-coherent CXL shared memory. While
current systems mostly assign private CXL memory parti-
tions to each node, there is increasing interest in leverag-
ing CXL shared memory for cross-node coordination and
communication in the form of RPC [56, 57], AllGather opera-
tions [8], database transactions [36, 39, 40, 51], and memory
object sharing [63, 72]. When devices supporting CXL 3.0
become commercially available, we expect this use case to
become more popular.
Most closely related to CXLMC is the body of work on

bug-finding in persistent memory programs due to the simi-
lar memory semantics and failure models. Yat [47] uses an
eager model checking approach that enumerates all post-
crash cache states. Jaaru [33] introduced cache line refine-
ment to perform stateless model checking on PM programs.
PSan [31] builds on Jaaru and applies a robustness condition
to discover missing flush bugs, while Yashme [32] checks
for atomicity violations when writing to persistent memory.
In terms of testing and dynamic checking, XFDetector [54]
tracks the persistency and consistency state of data as a fi-
nite state machine and relies on programmer annotations to
identify commit variables, and PMTest [55] checks the persis-
tency of and ordering relations between writes to PM against
user-specified rules. Pmemcheck [2] uses binary rewriting
to detect missing and redundant flushes as well as memory
overwrites. Agamotto [61] applies symbolic execution to
explore different paths of a PM program.
There is also a body of work on detecting crash-

consistency bugs in file systems. Janus [79] and Hydra [44]
perform fuzzing on file systems by mutating disk images
and file operations. B3 [58] uses bounded testing to explore
a bounded state space, while EXPLODE [82], FiSC [83], and
SAMC [50] use model checking to systematically explore the
state space of file system implementations. Their techniques
may be transferable to the CXLmemory setting, although the
differences in access granularity, failure model and memory
semantics have to be considered.
The problem of partial failure has been well-studied in

the context of distributed systems [21, 28], with a vari-
ety of frameworks and tools for testing, model checking,

and formally verifying fault tolerance of distributed sys-
tems [9, 23, 75, 76, 81]. Work on persistent atomicity [35]
builds the abstraction of a crash-tolerant shared memory
by using message passing in a distributed system. Failure
injection is commonly used by tools such as LEGOLAS [76],
MODIST [81] and ORCHESTRA [23] to expose bugs in dis-
tributed systems. CXLMC’s failure injection policy is distinct
as it is designed toworkwith our DPOR technique and injects
partial failures based on cache line constraints to explore
post-failure states of the shared memory with consideration
for CXL shared memory’s caching and persistence semantics.
In comparison, fault injection tools for distributed systems
generally assume a message-passing model with no shared
state and no equivalent notion of hardware-implemented
caching and persistence. However, general techniques for
failure injection [9, 76] could be adapted and applied on top
of a CXL memory model such as that provided by CXLMC.

Researchers have applied a number of abstract models and
correctness conditions for persistent memory programs [12],
some of which were initially devised for distributed sys-
tems [7, 35]. Partial failures have been assumed in some of
them, such as the Parallel Persistent Memory model [14],
strict linearizability [7], nesting-safe recoverable lineariz-
ability [11], and persistent atomicity [35]. However, this
assumption has not been adopted by existing testing/verifi-
cation tools because sharing of PM has not been a common
use case and lacked hardware support before CXL 3.0. The
failure model in this paper is most similar to the one in
the original formulation of strict linearizability [7], which
assumes that processes may fail independently and failed
processes may not be started again.
Stateless model checking has been explored to find bugs

in concurrent data structures [29, 30, 59, 60], supporting the
TSO/PSO model [4, 38, 86], the release-acquire fragment of
C/C++11 [6, 45], and the full C/C++11model [62]. To improve
the efficiency of stateless model checking, various forms of
dynamic partial order reduction (DPOR) [16, 25, 48, 65, 71,
86] have been proposed to avoid exploration of equivalent
executions. Our formulation of DPOR for CXL memory has
some similarity to prior work [5, 6, 15, 45, 46] that defines
execution equivalence based on read-from relations, as we
use cache line constraints to determine possible read-from
relations after partial failures.

8 Conclusion
CXLMC is the first model checker for CXL shared memory
programs. CXLMC adapts the constraint refinement-based
approach to both CXL’s shared memory model and CXL’s
partial failure model. Our evaluation shows that CXLMC
effectively finds bugs in our benchmark applications and can
model check our benchmark applications typically within a
few seconds and within a minute for the longest example.
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