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Abstract We present a new approach for creating repositories of real software
faults. We have developed a tool, the Automatic Fault IDentification Tool
(AFID), that implements this approach. AFID records both a fault revealing
test case and a faulty version of the source code for any crashing faults that the
developer discovers and a fault correcting source code change for any crashing
faults that the developer corrects. The test cases are a significant contribution,
because they enable new research that explores the dynamic behaviors of the
software faults. AFID uses an operating system level monitoring mechanism to
monitor both the compilation and execution of the application. This technique
makes it straightforward for AFID to support a wide range of programming
languages and compilers.

We present our experience using AFID in a controlled case study and in a
real development environment to collect software faults in the internal devel-
opment of our group’s compiler. The case studies collected several real software
faults and validated the basic approach. The longer term internal study re-
vealed weaknesses in using the original version of AFID for real development.
This experience led to a number of refinements to the tool for use in real
software development. We have collected over 20 real software faults in large
programs and continue to collect software faults.
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1 Introduction

The software engineering and programming languages research communities
have traditionally relied upon anecdotes and intuition about the relative im-
portance of various types of software faults to guide our efforts. Numerous
papers evaluate prototype tools on a few hand-selected software faults or even
synthetically-injected faults. In the rare cases when researchers do use their
tools to detect new faults in existing systems, they must manually verify that
the software faults they detect are both real and important. Moreover, in such
studies the research often does not provide empirical evidence that their tool
catches a significant percentage of important faults of the given type because
fault sets to perform such tests are often unavailable.

Researchers have recently begun to perform empirical studies of large data
sets of software faults. These studies typically mine fault data from CVS
archives that have become available in recent years due to the creation of
large, open software systems by the open-source community. Unfortunately,
these archives often lack the information necessary to easily reproduce the
software faults.

Collections of real software faults and the test cases to reproduce the faults
have the potential to provide a powerful new tool for software researchers. We
can use the test cases to automatically classify faults based on the error they
introduce in the program’s execution. A researcher could, for example, use
such a classification to determine whether null pointer exceptions represent
an important real world problem. Later on, the same data sets would enable
researchers to more easily and more rigorously evaluate fault finding tools.
The fault data set would provide real software faults that researchers could
use to evaluate their tools in an automated fashion.

One problem with most existing data sets is that they lack test cases that
reveal software faults. In an early attempt to remedy this situation, we tried
to manually collect real software faults. Our approach was to ask graduate
students to record the faults that they corrected while developing software
for their research. For each fault, we asked the students to record: (1) the
test case that revealed the fault, (2) a copy of the source code that contained
the fault, and (3) the source code change that removed the fault. They found
recording this information to be tedious, and instead they often focused on the
development task at hand and forgot to record any information. The lesson
from this experience is that the successful collection of software faults must
be automated.
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1.1 Basic Approach

In this paper we introduce a novel approach that monitors the software de-
velopment process to automatically record software fault data. For each fault,
our approach records: (1) a test case that reveals the fault, (2) a version of the
source code that contains the fault, and (3) a change to the source code that
corrects the fault.

We have implemented this approach in the Automated Fault IDentification
Tool (AFID). AFID automatically records software faults by monitoring the
compilation and execution steps of the software development process. The
underlying design principle for AFID is to record as much software fault data
as possible while imposing minimal runtime overheads and requiring minimal
assistance from the developer. The final goal of the AFID project is to collect
fault data from a wide range of software developers working on real projects.
Therefore, requiring the developer to actively participate in recording faults
would potentially make finding developers to use AFID much more difficult.
According to this principle, AFID has been designed to only record faults that
actually cause crashes. AFID does not recognize more subtle correctness faults
because that would burden the developer with describing the desired behavior
of an application. We expect that we can learn much interesting information
from crashing faults alone.

Execution
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Test Case
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Revision
History
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Fig. 1 Overview of Fault Characterization

Figure 1 presents an overview of our approach. Our approach is architected
with the following three primary components:

1. Execution Monitor: The execution monitor traces executions of the ap-
plication under development. The execution monitor records the inputs to
the application. If the application crashes, the execution monitor uses the
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recorded inputs to create a test case that reproduces the observed failed
execution. At this point, AFID records (1) a test case that contains the
application inputs that reveal the fault and (2) the source code version
in which the fault was discovered. AFID places this new test case in its
repository of unresolved test cases and stores a reference to the current
version of the subversion source repository in the test case.

2. Compilation Monitor: The compilation monitor traces executions of the
compiler to automatically discover which source files comprise the appli-
cation under development. Whenever the application is recompiled, the
compilation monitor records both a list of any new source files it discovers
and a list of all source files that have changed since the last compilation.
The compilation monitor then updates its internal subversion repository
with any changes that have been made to the application. Finally, the
compilation monitor invokes the replay component to check if the recent
changes correct any known software faults.

3. Replay Component: The replay component executes the newly compiled
version of the application on all of the unresolved fault revealing test cases.
If the application executes a fault revealing test case without crashing, the
replay component assumes that the most recent code change corrected
the underlying fault. The replay component records the current version
identifier as the fault correcting code change. The replay component then
marks the test case as resolved. Researchers have developed many replay
systems for debugging applications Choi and Srinivasan (1998); Steven et al
(2000); LeBlanc and Mellor-Crummey (1987). These other systems replay
the exact execution, while AFID generates test cases from the application
inputs with the goal of running different versions of the application on the
same test case. The exact executions of these new versions can potentially
differ from the version in which the test case was first recorded.

1.2 Contributions

This paper makes the following contributions:

– Automated Fault Collection Strategy: It presents heuristics that mon-
itor the development process to automatically record fault revealing test
cases and automatically detect which code changes correct these software
faults.

– Process Monitoring Technique: It presents a language and tool chain
independent technique to monitor both the executions of the application
under development and the evolution of its source code.
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– Automated Recording of Test Cases: It presents a technique to au-
tomatically record test cases from failed executions. These test cases can
potentially be incorporated into the application’s regression test suite.

– Monitoring Overhead Measurement: It presents measurements of the
runtime overhead of AFID’s monitoring for both a computationally bound
benchmark and an I/O bound benchmark.

– Case Study: It presents our experience using the tool to collect software
faults in a case study.

– Real World Experience: It presents our experience using AFID to mon-
itor the development of our research groups’ compiler infrastructure.

The remainder of the paper is structured as follows. Section 2 presents an
example to illustrate how the approach works. Section 3 presents the automatic
fault collection tool AFID. Section 4 discusses possible privacy concerns. Sec-
tion 5 presents overhead measurements and the results of our initial case study.
Section 6 presents our real world experience using AFID to collect software
faults. Section 7 presents related work; we conclude in Section 8.

2 Example

We next use an example to illustrate our approach. Let’s suppose that the
developer uses a text editor to write the program shown in Figure 2. This
program takes a command parameter that specifies its input file. The program
then opens this file and reads a series of commands from it. These commands
instruct the program to either write a digit to an array element, print an array
element, or prompt the user whether to continue. Note that line 19 is missing
a break statement, which would cause the execution of the prompt command
to erroneously continue into the code for the read command.

2.1 Monitoring Compilation

After a developer finishes writing the program, he/she would typically compile
the program using one of many Java compilers. AFID tracks the evolution of
the program’s code by monitoring the execution of the compiler. When the
compiler compiles the example program, it would make a system call to the
operating system to open Example.java for read access. AFID intercepts the
open system calls made by the compiler to record when the developer adds
new source files to the application. AFID then examines the file’s extension to
determine that this file contains source code for the application. The primary
benefit of this approach is that it enables AFID to support most compilers
while not requiring the developer to manually identify the source files that
comprise the application’s source code.
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1 public class Example {

2 public static void main(String[] arg)

3 throws IOException {

4 int array[]=new int[10];

5 FileReader fr=new FileReader(arg[0]);

6 while(true)

7 switch(fr.read()) {

8 /* Write to array element. */

9 case ’W’:

10 int woff=fr.read()-’0’;

11 int val=fr.read()-’0’;

12 array[woff]=val;

13 break;

14 /* Prompt user whether to continue. */

15 case ’P’:

16 System.out.println("Continue (y/n)?");

17 if(System.in.read()==’n’)

18 return;

19 /* This line is missing a break. */

20 /* Print array element. */

21 case ’R’:

22 int roff=fr.read()-’0’;

23 System.out.println(array[roff]);

24 break;

25 case -1:

26 return;

27 }

28 }

29 }

Fig. 2 Faulty Example Program

2.2 Monitoring Program Execution

In the normal development process, we expect that the developer would next
execute the example program on an input file. Figure 3 presents an input file for
the example program. The input file contains a sequence of three commands:
W23 instructs the program to write the value 3 to array element 2, P instructs
the program to prompt the user whether to continue, and R2 instructs the
program to print the second array element. Note that this input file invokes
the prompt functionality and if the user chooses to continue it would reveal
the fault in the prompt functionality of the example program.

W23PR2

Fig. 3 Fault Revealing Input File input.txt
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Typically, the developer would next execute the example program on this
input file by typing java Example input.txt. AFID’s execution monitor then
records the command line used to execute the program. The program’s exe-
cution opens the file input.txt for read access using the open system call.
AFID’s process monitor intercepts this call and records that the execution
reads from the file input.txt. Then the process prints the string Continue

(y/n)? to the screen. Let’s suppose the developer types “y” which reveals the
fault in the prompt code that causes the program to continue into the array
element printing code. The program then uses the byte intended to specify
the read command as an index. This causes the program to exit due to an
array out of bounds exception. AFID inspects the execution’s exit value to
determine that the program crashed.

The goal is to create a test case that can reproduce the crash. AFID records
the command line that was used to invoke the fault revealing execution, makes
copies of all the input files that the program opened, stores a trace of the
console user interactions, and stores the mapping from the pathnames of the
files that the program opened to the copies made by AFID.

2.3 Recording Fault Corrections

We expect that the developer will eventually correct any important software
faults. In this case, we assume that the developer has corrected the fault in
this program by changing line 19 to a break statement. When the developer
compiles the corrected program, AFID would then record that line 19 of the
Example.java file has been changed.

AFID then invokes its replay component to replay the fault revealing test
cases on the new version of the example program. The replay component
executes the example program using the recorded command line. When the
example program executes, it makes a system call to open the input.txt file.
AFID intercepts this system call before the operating system processes it and
changes the filename to the name of the copy in the test case. When the pro-
gram prompts for user input, AFID recognizes the prompt and responds with
the recorded input y. Because the developer corrected the underlying soft-
ware fault, the program executes correctly on the test case. AFID inspects the
program’s return value to determine that the underlying fault was corrected.

At this point, AFID has identified that the most recent source code change
corrects the underlying software fault. AFID has recorded the following infor-
mation for the example fault: (1) the buggy version of the example program
from Figure 2, (2) the test case that reveals a fault in the buggy version from
Figure 3, and (3) a diff that gives the source code change that corrects the
fault (for this example, replacing line 19 with break;). AFID records all of
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this information in its record for this fault. It then (optionally) uploads this
fault information to a centralized fault repository.

3 Automated Fault Identification

We have architected AFID as three basic components: (1) the execution mon-
itor, which records crashes and creates fault revealing test cases to reproduce
these crashes, (2) the compilation monitor, which identifies new source files
and tracks changes to the source code, and (3) the replay component, which
records when a source code change corrects a fault. Each component of AFID
uses the same basic monitoring strategy — they intercept the system calls
that the application or compiler uses to communicate with the underlying
operating system. This approach enables AFID to easily support many differ-
ent compilers, virtual machines, and programming languages with only small
configuration changes.

The goal of AFID is to collect complete information for software faults.
AFID collects the following information for each fault:

– Fault Revealing Test Case: For each reported fault, AFID records the
test case that reveals this fault.

– A Version of the Application with the Fault: For each reported fault,
AFID records a copy of the source code of the application version that
contains the fault. For space efficiency, this is stored as a version identifier
to a version control system repository.

– Fault Correction: For each reported fault, AFID records the source code
change that corrected the fault. For space efficiency, this is stored as a
version identifier to the version control system update that stores the cor-
rection.

– Revision History of the Application: AFID records a fine-grained
revision history of changes to the application’s source code.

3.1 Recording Test Cases

AFID’s execution monitor traces the executions of the application under devel-
opment to generate fault revealing test cases. The execution monitor records
the inputs to the application’s execution by intercepting the system calls from
the application to the underlying operating system.

The execution monitor uses the ptrace system call to monitor executions
of the application under development Haardt and Coleman (1999). Figure 4
presents an overview of the approach. The ptrace interface allows the execu-
tion monitor to intercept system calls made by the application under devel-
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opment before the operating system processes the call. We next describe our
ptrace-based approach in more detail.

The execution monitor begins by forking a new child process, the child
process calls ptrace with the PTRACE TRACEME option to request tracing, and
then the child process calls the exec system call to execute the application
under development. When the child calls the exec system call, the previous
invocation of ptrace with the PTRACE TRACEME option causes the child process
to stop before executing the new application image.

The monitoring process then calls the ptrace system call with the PTRACE SYSCALL

option and then calls wait. The next time the child process makes a sys-
tem call, the operating system suspends the child process and wakes up the
monitoring process. When the execution monitor is awoken, it uses ptrace’s
PTRACE GETREGS option to read the system call parameters to determine the
type of the system call. If the child process performs an open system call,
the execution monitor reads the system call parameters to obtain a pointer
to the filename and the file access mode. The execution monitor then uses
ptrace’s PTRACE PEEKDATA option to read the filename from the monitored
process’s memory space using the pointer passed into the open system call.
AFID records the absolute pathname of the file that was opened.

If the monitored application has requested to open the file for write access,
the execution monitor must immediately make a copy of that file. If AFID
delays copying the file until the monitored application actually crashes, the
monitored application would likely have already changed the contents of the
file. If the monitored application has requested to open the file for read access,
the execution monitor uses a lazy copy strategy. It delays the overhead of
copying the file until the monitored application actually crashes.

When the monitored application exits, the execution monitor inspects its
return value to determine whether it crashed. If the monitored application
has crashed, the execution monitor makes copies of all of the files that the
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monitored application read. It then stores the mapping between the pathnames
that the monitored application used to access the files and the files’ copies in a
text file in the test case. Otherwise, if the application successfully exits, AFID
discards the files.

3.1.1 Recording User Interactions

We next describe how AFID records user interactions. AFID uses the same
ptrace-based mechanism to record a trace of read events from standard input
and write events to standard output. One potential issue with simply replaying
the exact user interaction is that changes in the program (or even the time)
may change the text that the program outputs. For example, consider the user
interaction shown below:

Display: <STARTING>

Display: [Tuesday, April 20, 2010]>

Response: ls
If we require that the output match exactly, the test case will have signif-

icant problems generalizing to future executions of the program. Instead, for
each input event AFID computes the shortest suffix of the program output
since the last input event that uniquely identifies when the input occurred.
For the example, this suffix is just the last two character ’]>’ in the prompt.
This fuzzy matching approach allows the recorded test case to generalize over
small changes to the program’s output.

3.1.2 Duplicate Test Cases

One potential issue is that the developer may rerun the same test case multi-
ple times. To avoid storing multiple copies of the same test case, the monitor
computes a hashcode for each test case. The monitor then compares this hash-
code to a list of hashcodes for the other test cases. If AFID records a hashcode
match, it deletes the new test cases. AFID makes the assumption that the
hash values do not collide. In the unlikely event that two different test cases
have the same hash value, AFID only stores the first test case.

3.1.3 Filtering Inputs

The monitored application’s execution typically reads many files that would
not be considered inputs to the application. For example, the dynamic linker
may load library files or a virtual machine may load class files, virtual ma-
chine components, virtual machine configuration files, and various system files.
These extraneous input files would make the test cases very large. Moreover,
recording input files from dynamic libraries or virtual machine internals could
make the test case specific to the exact execution environment.
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AFID employs a filtering mechanism to remove these extraneous files. The
filter mechanism uses a configuration file that contains a list of regular ex-
pressions that match the filenames to exclude from the test cases. AFID can
automatically generate this configuration file for Java applications by moni-
toring the execution of a dummy Java application and then generating a list
of files that are loaded by the JVM. AFID then adds some default expressions
that exclude class files and other known extraneous files.

3.2 Monitoring Compilation

AFID stores a copy of the source code each time the developer compiles the
application. To efficiently store multiple versions of the application’s source
code, AFID maintains an internal subversion repository. Subversion is an
open-source version control system with support for atomic commits Collins-
Sussman (2002). AFID interacts with subversion by calling the standard com-
mand line Subversion client. Modern decentralized version control systems
such as GIT could alternatively be used to possibly support merging the AFID
repository into the main branch, but would require a tighter coupling with
the development repository Chacon (2010). Each time the developer compiles
the application, the compilation monitor component of AFID monitors the
compiler to determine which files contain the application’s source code. The
compilation monitor uses the ptrace-based monitoring technique described in
Section 3.1 to record application source files.

When the compilation monitor discovers a new source file, it adds the file
to its internal subversion repository. Then the compilation monitor commits
all of the source code changes since the last compile to its internal subversion
repository. Finally, the compilation monitor calls the replay component to
replay all of the unresolved fault-revealing test cases on the new version of the
application.

One challenge is that AFID’s internal subversion repository may conflict
with development projects that make use of subversion. To maintain compat-
ibility with subversion, the compilation monitor makes its own copy of the
source code tree to use for its internal subversion repository. To avoid the
overhead of copying large files, the compilation monitor makes hardlinks from
the filename in its internal copy of the source code tree to the original in the
developer’s source code tree. The compilation monitor then uses the copy of
the source code tree to build its internal repository.
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3.3 Replaying Test Cases

The replay component checks whether the most recent source code changes
correct any of the faults AFID has recorded. The basic strategy is to execute
the new version of the application on each of the unresolved fault revealing
test cases. If the application executes successfully, the replay component has
determined that the most recent code change corrects the fault revealed by that
test case. The replay component then stores the subversion version identifier
of the source code version that corrects the fault in the test case and marks
the test case as resolved.

3.3.1 Sandboxing Replay

A naive replay implementation would simply copy the files in the test case back
to their original locations and then execute the application. However, this
strategy has serious potential consequences — the replay component could
potentially overwrite important files when copying the test case files or the
execution of the application could overwrite important files. AFID prevents
the replay of applications from overwriting important data by using the same
ptrace-based technique to partially sandbox the application. This sandbox is
not intended to isolate a hostile application — it is intended to prevent the
replay of normal applications from accidentally overwriting important files.

The replay component implements the sandbox by intercepting file open
requests. If the application makes a file open request for one of the test case
files, the replay component will redirect the request to the file in the test case.
If the application makes a request for an excluded file, the replay component
will pass the open request unmodified to the operating system. Note that if the
application is modified or the fault is corrected, the application can open files
that were neither present in the test case nor filtered by the filter expressions.
It is straightforward to modify the replay component to make a copy of that
file and redirect the request to the copy. This sandbox provides the application
with the illusion that the test case files are in the same location as the files in
the original execution — a secondary benefit of this approach is that it enables
the test case to reproduce software faults that depend on the exact location
of the input files.

We next discuss how we implement the sandbox using the ptrace system
call. The replay component begins by making a copy of the test case. It then
starts the monitored application’s execution inside the partial sandbox. The
basic idea is to use the technique described in Section 3.1 to intercept open

system calls. When the replay component intercepts an open system call, it
retrieves the requested filename. If the filename is contained in the test case,
the replay component will modify the system call’s parameters to open the
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copy in the test case. The replay component changes the open system call’s
filename by using ptrace’s PTRACE SETREGS option to modify the register that
stores the pointer to the filename to point to a new memory location. Then
the replay component uses ptrace’s PTRACE POKEDATA command to write the
filename of the copy to this new memory location. The replay component then
restarts the application to allow the operating system to service the system
call.

Note that the replay tool must obtain memory in the other application’s
memory space to store the filenames of the copies. The replay system obtains
this memory by intercepting the first system call that the application per-
forms. The replay system rewrites this system call’s parameters to change it
into a brk1 system call to obtain the initial bottom of the heap. The replay
system restarts the application and then the operating system executes the
injected brk call. The application is halted after the system call is performed
and control is returned to the replay tool. The replay tool then modifies the
program counter to cause the application to re-execute the same system call.
The replay tool then repeats the same system call injection strategy to inject
a second brk system call that sets the new bottom of the heap. The replay
system has now allocated its own space in the application’s memory space.
The replay system then resets the program counter another time to perform
the initial system call. If the application later uses the exec system call to load
a new binary, the replay system repeats the same procedure to obtain space
in the newly loaded application’s memory space.

If the application’s execution is successful, the replay component has dis-
covered that the most recent source code change corrects the fault. Note that
the test case may not contain some files that were present on the local disk.
In this case, it is straightforward for the replay component to add copies of
these files to the test case.

3.3.2 Termination

It is possible that the developer may make a source code change that causes
the application to loop on an unresolved test case. To address this issue, AFID
records the elapsed time for each execution of the application. The replay com-
ponent then uses this record of execution times to estimate an upper bound on
the application’s execution. When the application executes for longer than this
bound, AFID assumes that the application is looping. This prevents the re-
play component from waiting indefinitely for a non-terminating computation.
Note that in the worst case, when a timeout is used to incorrectly identify an

1 The brk system call is used to read and set the bottom of the heap. This system call is

the primitive that underlies library-based memory allocation functions such as malloc.
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execution as looping, the effect is only to prevent AFID from recognizing a
fault correction.

3.4 AFID Server

AFID uses a web-based server application that aggregates the faults discovered
by the AFID client. AFID supports two update modes: automated and man-
ual. The automated mode automatically uploads a test case once the client has
discovered the fault correcting code change. The manual mode allows the de-
veloper to manually control the uploading process. We developed the manual
mode in anticipation that some developers will wish to maintain control over
when uploads are performed. The client uploads the fault revealing test case,
the version identifier for the source code version whose execution generated
the fault revealing test case, the version identifier for the code change that
corrects the fault revealing test case, and the latest version of AFID’s internal
subversion repository for the application.

3.5 Interpreted Languages

The current implementation of AFID is designed for language environments
in which there is a separate compilation and execution phase. Therefore it
does not adequately address interpreted languages. We note that the basic
techniques developed in this paper can be used in this environment if the
execution monitor and compilation monitor are combined into a single tool.

The basic idea is to record for execution (1) the source files that the in-
terpreter opens and (2) the files that the program reads. The two types of
files can be distinguished by their extensions. The combined monitor would
then perform a repository checking for the source files in the same manner as
the compilation monitor. If the program crashed, the combined monitor would
generate a test case in the same manner as the execution monitor.

3.6 Recording Regression Tests

The design of AFID is focused on recording fault data for research. However, we
expect that practitioners may also find AFID beneficial for recording regression
tests. In particular, AFID’s fault data set includes test cases for each fault
that the developer has discovered and corrected. We expect that this library
of test cases may be a useful addition to the application’s regression test suite.
AFID’s execution monitor provides the functionality to cleanly bundle the
component files into test cases. AFID’s replay component allows the test cases
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to be easily replayed on future versions of the application. Practitioners may
find AFID particularly useful for test cases that contain files that are scattered
throughout the directory structure or that involve the modification of common
configuration files or any other files that are shared with other applications. An
AFID test case consists of a collection of input files that comprise the inputs
for the test case, a transcript that records the user interactions, and a text file
that list the original pathnames for each of the input files. For test cases whose
input files are isolated into a single directory, it is straightforward to convert
an AFID test case into a standard test case that is usable in regression testing
frameworks.

3.7 Limitations

The primary design goal of AFID, to minimize developer burden, places sig-
nificant limitations on its scope. For example, AFID relies on the error code
returned by a program to detect crashes instead of using test cases to validate
correct behavior. This approach works well to detect uncaught exceptions in
Java applications. However, many programs return error codes in their nor-
mal execution to indicate an error in their input. For example, our compiler
returns a negative value if the input source code contains syntax errors or
semantic errors. This causes a difficulty — AFID cannot tell the difference
between an error in the compiler and an error in the input. Note that errors
in the input will never generate a false report as the given input will always
cause the compiler to exit with a negative return value. But over time these
test cases can build up, and cause the replay process take increasing amounts
of time. A second concern is that bugs in error handling code will often never
be recorded, because even after they are corrected the program will still return
a negative value.

AFID implicitly assumes that bugs are deterministic. Non-deterministic
bugs can cause AFID to report the wrong code change as a bug fix. In our
internal use of AFID, we have occasionally observed this problem. We have
found that asking the developer to confirm bug fixes helps filter these cases. We
have also occasionally filtered such bug reports on the server side. Retrying test
cases multiple times can be used to automatically exclude non-deterministic
bugs. If capturing non-deterministic bugs is desirable, statistical approaches
applied across many versions of the code could potentially be used to detect
which source code change was likely to have corrected the bug.

AFID is currently limited to console programs. AFID could be extended
to support applications that interact with users through the graphical user
interface. The idea is to extend the GUI library to export a trace of both user
inputs and program events and an interface that allows AFID to inject user
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inputs. AFID could then use a similar approach to its approach for console
I/O to the GUI.

4 Privacy Concerns

Privacy may be a concern when using AFID for software fault user studies.
Because AFID records all source code changes along with the application in-
puts, it may be possible to discover the actual identity of a study participant
from the comments, coding style, project, and test cases. We expect that user
studies will not use AFID to monitor the development of applications that
contain sensitive source code or that may process sensitive inputs. Because a
developer may accidentally input private information into the application un-
der development, AFID supports a manual test case transfer mode that allows
the developer to maintain complete control over whether to include test cases
in a data set.

5 Evaluation

We next discuss our experience using the AFID implementation. The AFID im-
plementation consists of approximately 5,000 lines of C code and shell scripts.
The implementation is available for download at http://demsky.eecs.uci.

edu/afid/ and we encourage readers to download AFID and contribute bugs
to the repository. In this section, we report our measurements of AFID’s mon-
itoring overhead on two applications and then discuss our experiences using
AFID to monitor software developers.

We measured AFID’s overheads on a workstation with a 2.2 GHz Core 2
Duo processor, 2 GB of RAM, and Debian Linux running kernel version 2.6.25.
We used version 1.5.0 14 of Sun’s HotSpot JDK.

We used two different benchmarks: the Jasmin byte code assembler and
the Inyo ray tracer. We used version 2.3 of the Jasmin bytecode assembler. It
contains 11,450 lines of code and is available for download at http://jasmin.
sourceforge.net/. We selected Jasmin because assembling bytecode involves
a relatively large amount of I/O and therefore is likely to incur a significant
monitoring overhead under AFID. The Inyo ray tracer contains 5,843 lines
of code and is available for download at http://inyo.sourceforge.net/.
We selected Inyo to give results for a longer-running, computational-bound
benchmark.
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Jasmin Inyo Compiler

Normal compile 2.54s 1.34s 8.32s

Monitored compile with svn 6.53s 4.67s 13.98s

Monitored compile without svn 3.79s 1.57s 11.32s

Background compiler 2.95s 1.43s 8.71

Table 1 Monitoring Overhead

5.1 Compilation Overhead

Table 1 presents the compilation overhead measurements. All of these mea-
surements were taking with no outstanding test cases and no code changes.
Without monitoring, we measured the time to compile Jasmin as 2.54 seconds,
the time to compile Inyo as 1.34 seconds, and the time to compiler our group’s
compiler as 8.32 seconds. With monitoring and updating AFID’s internal SVN
repository, we measured the time to compile Jasmin as 6.53 seconds, Inyo as
4.67 seconds, and our group’s compiler as 13.98 seconds. We then measured
the time to compile with monitoring but without updating the internal SVN
repository for Jasmin as 3.79 seconds, for Inyo as 1.57 seconds, and for our
group’s compiler as 11.32 seconds. In our initial conference publication, we
initially expected that these numbers were acceptable. After using AFID to
monitor our own internal development, we have since discovered that even
these delays were annoying.

One of the largest issues we discussed above was the extra time AFID adds
to compilation. We have addressed this concern by extending AFID to support
background commits to the subversion repository and to replay test cases in
the background. The combination of these two changes means that AFID’s
monitoring causes a negligible delay in the compilation time. The primary
challenge with supporting background processing is ensuring that multiple
background instances of the compilation monitor cannot simultaneously up-
date and therefore potentially corrupt AFID’s internal data structures. We
have modified AFID to use locking to ensure that only a single background
instance of the compilation monitor can update the internal data structures
at once. We have modified the execution monitor to atomically add new test
cases to the repository of unresolved test cases using the standard directory
renaming technique to prevent possible races with the replay component.

Table 1 also presents overhead measurements for the compilation monitor
that compares foreground processing to the new background processing mode.
We can see that background processing significantly lowers the overhead of
monitoring compilation. With background processing, the compilation mon-
itoring overhead is only 9 % on average. Note that the relative benefits of
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background processing increase as the system builds a collection of test cases
as they are also tested in the background.

5.2 Execution Overhead

Jasmin Inyo

Normal execution 0.21 s 30.73 s

Monitored execution 0.43 s 31.99 s

Table 2 Execution Overhead

Table 2 presents the execution overhead measurements. Our workload for
Jasmin consisted of all of the examples contained in the Jasmin distribution.
Without monitoring, Jasmin took 0.21 seconds to execute on this workload.
With monitoring, Jasmin took 0.43 seconds to execute on this workload. Our
workload for Inyo consisted of the model file included with the Inyo distribu-
tion. Without monitoring, Inyo took 30.73 seconds to execute on this workload.
With monitoring, Inyo took 31.99 seconds to execute on this workload. We ex-
pect that Jasmin’s monitoring overhead of 104% represents a worst case as
Jasmin performs a large number of system calls, which incur extra overheads
under AFID, and relatively little computation. We expect that Inyo’s moni-
toring overhead of 4% represents the best case as Inyo performs relatively few
system calls and a large amount of computation. We expect that this range of
overhead will be acceptable in most development environments.

5.3 Scalability

We performed a set of experiments to explore how AFID’s execution time
varies as the number of test cases increases. We performed these experiments
on a 2.26 GHz Core 2 Duo with 2GB of RAM running Linux version 2.6.30
and JDK version 1.5.0 19-b02. We generated a set of 50 inputs that cause
the Inyo ray tracer to exit with an error code. We then measured how long it
took to compile the Inyo ray tracer under AFID as we increased the number
of outstanding test cases. Figure 5 presents the results of this experiment.
For the foreground mode of AFID, we see that the compilation time increases
linearly in this experiment with the number of test cases. We note that test
cases that take longer to execute would result in longer compilation times.
For the background mode of AFID, we see that the compilation time does not
change as we increase the number of test cases. As modern processors typically
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include 4 or more cores, we expect that the background processing performed
by AFID will have a negligible effect on the usability of the machine.
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Fig. 5 Scalability of AFID

5.4 Case Study

Our case study attempts to explore the most basic question one can ask about
the AFID tool: Does it effectively record real software faults? To answer this
question, we recruited a population of software developers and had each de-
veloper complete a programming problem while being monitored by AFID.

5.4.1 Developer Population

One goal of this case study is to verify that AFID’s fault identification heuris-
tics work with the wide range of debugging approaches used by developers.
We attempted to represent this wide range in our study population by recruit-
ing 8 students with diverse backgrounds: the study participants had widely
varying educational backgrounds, industrial experience, years of programming
experience, and countries of education. Their educational backgrounds ranged
from current undergraduate students to doctorates. Several participants had
industrial experience while other participants had only academic experience.
The study participants were educated in the United States, China, and India.



20

5.4.2 Methodology

We installed the AFID tool in each developer’s account and instructed the
developer in the use of the AFID tool. We then asked each developer to com-
plete a programming problem in Java while using the AFID monitoring tool.
We selected the programming problems from practice programming contest
problems and basic data structure implementation problems.

5.4.3 Fault Breakdown

After a developer completed the problem, we asked the developer to go through
the fault reports that AFID had collected, verify that the recorded corrections
were correct, and if so, to describe the underlying programming error. We then
examined their responses and attempted to classify the faults by their under-
lying programming errors. Table 3 presents a breakdown of the recorded faults
by the type of the underlying programming error. The two largest categories
were errors in the logic for parsing the input and null pointer dereference er-
rors. The parsing errors typically involved errors in reading the specification of
the input format. The null pointer dereference errors were not simply omitted
null pointer checks, but instead a wide range of logic errors that caused the
programs to dereference null pointers.

Fault Type Count

Parsing logic error 3

Null pointer dereference error 3

Initialization error 2

Missing condition check 1

Loop bound error 1

Shadowed field 1

Incorrect comparison 1

Table 3 Fault Breakdown

We observed that even though AFID can only record failures that cause
the application to throw an exception, in our case study, AFID recorded a rich
set of software faults. Even in this small case study, AFID recorded high-level
faults including errors caused by misunderstandings of the exact format of the
input file.

5.4.4 Fault Recording Errors

We next discuss how often AFID recorded the correct fault-correcting source
code change. For each recorded fault, we asked the participant to verify whether
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AFID had correctly identified this change as fault correcting. We report the
results in Table 4. The table contains a row for each participant in the study.
The first column gives designators for each participant, the second column re-
ports the number of faults AFID recorded for that participant, and the third
column reports how many of these faults contained the correct fault correcting
source code change.

Participant Number of Number of

Recorded Faults Verified

Corrections

A 2 2

B 1 1

C 4 2

D 8 5

E 1 1

F 1 1

G 0 0

H 0 0

Table 4 Fault Counts by Participant

We note from the table that AFID has recorded fault data entries that con-
tain the wrong fault correcting code change for two of the study participants.
We then examined the incorrect fault correcting source code changes to better
understand the problem. We found a surprise — these two study participants
employed an experimental approach to correcting software faults. They made
changes to the code to improve their understanding of why the application
threw an exception. For example, in two cases the participant commented out
the line of code that was throwing the exception. AFID then recorded that
this source code change cause the program to no longer crash and record the
experimental code change as the fault correcting code change. In the other
three such cases, the participants commented out incorrect debugging code
that caused the program to throw an exception. The programming problems
were relatively simple and participants G and H solved the problems without
making any errors.

In response to this case study, we have extended AFID to verify suspected
fault correcting source code changes with the developer before adding them to
the repository. We made use of this functionality in the internal deployment
of AFID described in Section 6.
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5.4.5 Multiple Corrections

When we manually reviewed the fault correcting source code changes, we no-
ticed one source code change that contained corrections for many different
faults. In this case, what happened was when the developer discovered the
first fault, he realized he had made the same mistake two more times in the
same method and corrected all instances of this mistake. We observed only
a single instance of a source code change that corrected multiple faults. We
foresee that future versions of AFID will allow a developer to note when the
developer believes that a source code change corrects multiple fault instances.

5.4.6 Developer Feedback

The user experience for AFID users is a concern for large user studies. After
the user study, we asked the participants to provide feedback about their
experience using the AFID monitoring tool. One participant commented that
using the tool was unnoticeable as the user just used the regular javac and java
commands. The participant thought the general experience was very good. One
participant was “amazed...at how accurately AFID caught my critical bugs”.
Several participants noticed a slight delay when compiling programs. We plan
to address this delay by performing both the repository updating and test case
replaying in the background.

6 Real World Experience

During the past several months we have used AFID internally in our group.
Group members have used AFID to monitor the development of our research
compiler and some of their course assignments. In this effort we have collected
information about several real software faults. This effort exposed several us-
ability issues with our original implementation and we have adapted the im-
plementation to address these issues.

6.1 Faults Recorded

Table 5 presents the faults we have recorded using AFID. We have recorded
faults during the development of our group’s research compiler (C1 through
C15) and two class projects (P1 and H1 through H6). Our group’s research
compiler currently contains over 68,000 lines of Java and C code.

An examination of the faults reveals that AFID has recorded a rich set of
faults. The faults include examples of common programming errors including
negation of the condition in an if statement and errors in code to handle null



23

pointers. The faults also include more complex algorithm specific errors in
parsing code, type checking logic, and pointer analysis logic.

P1. Missing condition in if statement and error in array index.

H1. Use of wrong variable.

H2. Use of == instead of != in if statement.

H3. Missing table lookup.

H4. Missing bit shift.

H5. Extra bit shift.

H6. High level changes in use of array.

C1. Missing null pointer check in printing code.

C2. Parse tree traversal bug when generating AST.

C3. Logic bug about which allocation site to analyze.

C4. Parse tree traversal bug when generating AST.

C5. Null pointer check when flattening AST.

C6. Null pointer check when flattening AST.

C7. Null pointer check when comparing specificity of methods.

C8. Negated condition in if statement.

C9. Missing if condition in array type checking code.

C10. Error in handling null in testing equivalence.

C11. Error in ordering of operations when mutating graph.

C12. Cast to the wrong class.

C13. Omission of adding node to set to visit.

C14. Missing null pointer check.

C15. Large logic change.

Table 5 Faults Collected

One potential concern with AFID’s crash recording approach is whether it
can record programming faults beyond simple bugs such as division by zero
errors and missing null pointer checks. A quick review of the recorded faults
reveals that AFID recorded a rich set of software faults. The intuition why
AFID can record complex faults is that AFID can record faults that break sub-
tle program invariants because these program invariants are implicitly checked
by other parts of the program. When an invariant is violated, these implicit
checks cause the program to crash, and this crash is detected by AFID.

Examples of rich faults that AFID has recorded include bugs in the com-
piler code that generates the abstract syntax tree from the parse tree. Our
compiler contained two bugs that improperly traversed the parse tree and
resulted in errors. AFID was able to record both of these bugs.

AFID also recorded a fault in the compiler’s loop optimization pass. This
fault performs transforms to control flow graph that spliced in a loop header
and added edges in the wrong order.

In monitoring the development of our research compiler, AFID has recorded
both recently introduced faults introduced and long lived faults. While many
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of the recorded faults were recently, AFID did record long lived faults. In
particular, fault C9 in the type checking code had existed for over two years.

An examination of the recorded faults reveals them to be significantly
richer than those generated by automated fault injection strategies. While we
did observe simple faults such as negating conditions, missing statements, and
missing null pointer checks in our fault collection, much of our record fault
data set was made up of more subtle faults.

6.2 Lessons Learned

We learned a great deal in the process of deploying AFID in our internal
development environment.

6.2.1 Build Processes

The first lesson is that real world build processes are complex. Our compiler’s
build process calls javacup to build the java source files for the parser from
a cup grammar, then makes multiple invocations to javac, and finally calls
javadoc to generate documentation. One problem is that AFID assumes that it
can check test cases after the execution of the javac. During our build process,
the Java class files may not be completely built until the make file performs
the final invocation of javac. This example highlights the need for AFID to
provide flexible options that can be used to support a wide range of different
build setups.

6.2.2 Development Environments

Another lesson is that real world development environments are complex. The
students in our group use a wide range of development environments including
vi, emacs, eclipse, and netbeans. The initial version of AFID assumed that the
compiler would provide a terminal window to allow the developer to tell AFID
whether a change was likely to correct a fault. Unfortunately, environments
like Eclipse or NetBeans do not provide a terminal window.

6.2.3 Compilation Times

During compilation, our initial version of AFID required developers to wait
while it executed its testcases. We found that this version AFID’s replay takes
too long. Our group develops a number of long running analyses. When they
fail and generate testcases, running these testcases can take quite some time.
Moreover, we have discovered that developers find any extra time waiting for
compilation to be distracting.
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6.2.4 Forgetting to use AFID

In our experiences, developers often forget to turn AFID on. We have found the
best course of action was to setup AFID to always run. The idea is to include
an AFID configuration file in the root of the project that AFID is monitoring
that tells AFID to monitor the compilation and execution of programs in this
part of the directory hierarchy.

The concern then becomes that the developer may forget that AFID is on
and accidental disclose private information. This could happen if the developer
inputs their personal information into the program under development and
the same execution reveals a program fault. In this case, AFID would report
a test case that contains the developer’s personal information. To make the
execution monitoring obvious, AFID now prompts that it is running whenever
it monitors the compilation or execution of a program.

6.2.5 Applicability

We have not been able to apply AFID to all of the projects in our group.
Some of these projects are performance sensitive. In these projects we are
concerned with developing a precise understanding of their performance, and
do not wish to introduce performance changes by monitoring them with AFID.
Other projects in our group make extensive use of high-bandwidth, latency
sensitive network communications, and therefore are not good candidates for
AFID. However, in spite of these limitations we have been able to use AFID
to monitor the vast majority of our group’s software development effort.

6.2.6 Network File System

Our group’s development environment consists of a cluster of networked work-
stations all of which mount a networked filesystem with the user directories.
One issue with using in AFID in this environment is that if a developer uses
AFID on two different machines, the list of filenames to exclude can be incor-
rect. We have updated AFID to create a list of files to exclude on each host
that it runs on.

6.2.7 Privacy

In our internal development, the hypothetical privacy concerns we discussed
earlier have not occurred. The compiler code is freely available and the in-
puts are typically publicly available benchmarks. A few students have been
unable to use AFID due to work involving confidential code. We expect that
in practice, confidential code is likely to present a larger challenge.



26

6.3 Extensions

We next discuss how we extended AFID to address the issues that we discov-
ered while using AFID internally.

6.3.1 Complex Build Processes

There are two approaches to support complex build processes with AFID. The
straightforward approach is to simply wrap the make command with AFID’s
compilation monitor. We have found that it is sometimes useful to simply
modify the make file to explicitly support AFID.

We have also extended AFID’s compilation monitor to support two modes:
a compilation monitor mode that simply updates the repository without re-
playing test cases and the normal mode that both updates the repository and
replays the test cases.

To address the wide range of development environments some of which
provide a terminal window and some of which provide X-windows access, we
have extended AFID to use X-windows when available to create a window
to ask the use, and to use the terminal when the X-windows support is not
available. One of the primary advantages of X-windows support is that AFID
can display user dialogs after returning control of the console, and therefore
it enables AFID’s compilation monitor to perform time consuming operations
in the background.

6.3.2 Improved Sandbox

In the earlier version, we sandboxed only the files that the original execution
accessed. We have found that in practice either fault corrections or other source
code changes often cause replayed test cases to generate new output files in
the developer’s directories. The creation of these output files by the replay
component is distracting at best and at worse has the potential to overwrite
important files. To address this issue, we have improved AFID’s sandbox to
sandbox all files that replayed executions write using the same ptrace-based
technique.

6.3.3 Manual Control

In the process of using AFID, we have found times when limited manual
interaction was useful. We have observed cases in which over time erroneous
inputs cause AFID to store a large number of unresolved test cases. To address
this issue, we have provided a mechanism that allows developer to periodically
flush the test case archive. We have also found that bad fault information
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was occasionally uploaded to the server. We have found it straightforward to
manually review the faults and remove any faults that are problematic.

7 Related Work

Researchers have recently developed tools to mine CVS repositories to collect
some of this information Nagappan et al (2006); Williams and Hollingsworth
(2004); Neuhaus et al (2007). The CVS mining research identifies CVS commits
that correct software faults through a heuristic analysis of the CVS checkin
comments. Researchers have discovered many interesting properties including
that code changes on Fridays are more likely to cause problems Śliwerski et al
(2005). Other research discovers implicit interface rules by searching for code
changes that occur together Livshits and Zimmermann (2005). The primary
way that our work differs from previous work on CVS mining is that our
work provides fault revealing test cases in a format suitable for automated
tools. The extra information provided by these test cases will enable empirical
software research to explore software faults in new ways — for example, the
test cases will enable researchers to use dynamic analyses to explore the faulty
executions.

Developers sometimes commit CVS updates that both correct a software
fault and make other changes. Traditional CVS mining techniques do not dis-
tinguish between the fault correcting changes and other bundled changes and
therefore can extract software fault corrections that are too large. Developers
typically compile their code more often than they commit changes to a code
repository. As our work is likely to log changes to the code base more fre-
quently, it has the potential to more precisely characterize the changes that
correct a software fault. We note that existing techniques such as delta debug-
ging used in conjunction with CVS mining could help to minimize the failure
producing changes Zeller (1999).

The Marmoset project course submission system records snapshots of stu-
dent’s code development Spacco et al (2005). While both systems can collect
information about software faults, they target different development environ-
ments. The two systems differ in how they detect which source files comprise
an application. Marmoset functions as a plugin to Eclipse and can therefore
use Eclipse’s internal project management functionality to detect source files,
while AFID attempts to be compatible with all build environments. A more
critical difference is that Marmoset uses a set of test cases provided by an in-
structor while AFID must monitor the executions of an application to collect
fault revealing test cases.

Researchers have also developed data sets of applications with seeded
faults Do et al (2005). These data sets are limited in size because they are
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labor intensive to create — researchers must manually seed faults and create
test cases that reveal these faults. While these data sets have proven to be a
useful tool, potential differences between seeded faults and real software faults
can threaten the validity of experiments. Moreover, because the software faults
are seeded, the data set does not contain information that can be mined to
learn about real-world software faults.

The iBUGS project is based on the observation that after developers cor-
rect a bug, they often add regression tests designed to ensure that future
changes do not reintroduce similar bugs Dallmeier and Zimmermann (2007).
Their approach searches CVS commit messages for text that indicates that
the change corrects a bug. They then build pre-fix and post-fix versions of the
application and run the versions on the test suite to identify any test cases
that reveal the given fault. They have successfully used this technique to build
a repository of software bugs.

BugBench is a collection of large scale programs and test cases to trigger
bugs Lu et al (2005). The collection contains 19 bugs from 17 different appli-
cations. These bugs include 13 memory-related bugs, 4 concurrent bugs, and
2 semantic bugs. AFID could automate the construction of such test suites
— we note that many of the bugs in BugBench cause crashes and therefore
AFID’s crash detection technique would work for these bugs.

Researchers have developed many replay systems for debugging applica-
tions Choi and Srinivasan (1998); Steven et al (2000); LeBlanc and Mellor-
Crummey (1987). These other systems replay the exact execution, often with
the goal to help developers deterministically replay software bugs in multi-
threaded programs. AFID’s goal is to execute new versions of the application
on the same test case. As a result of these goals, the two system designs are
very different. Replay systems incur significant overheads to ensure that they
replay the execution of threads in the exact same order. Because AFID must
support replaying a test case on a modified version of the program, there can-
not be a similar notion of preserving the exact order that threads execute in.
Replay systems can simply record the exact outputs of the sequence of sys-
tem calls an application makes while AFID must replay a test case even if an
application has been modified to perform system calls in different orders.

AFID relies on the ptrace interface to monitor both application compila-
tion and execution. Researchers have used the ptrace interface to inject faults
into applications Some et al (2001) and to safely execute untrusted code Sekar
et al (2003). Researchers have also used similar program monitoring techniques
to implement user space file systems Spillane et al (2007).

Cooperative Bug Isolation monitors the execution of applications by the
end user to provide the developer with information to help isolate and cor-
rect bugs Liblit et al (2003). CBI is constrained in that it must make strong
guarantees about maintaining end user’s privacy. We expect that adapting
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techniques like AFID to monitor end users could be very useful for studying
and replicating software bugs if the considerable privacy concerns could be
addressed. Automatically collecting enough information to replicate software
bugs without divulging personal information remains an open problem.

Techniques based on symbolic execution can be used to generate test cases
that drive an application into a failing state Cadar and Engler (2005). AFID
differs from these techniques in that it simply monitors the inputs to actual
program executions and if the program crashes uses these inputs to generate
a test case that reproduces the failure while these other techniques attempt to
find unknown bugs.

This paper extends our previous work on AFID Edwards et al (2008) with
our experiences using AFID in real world development. This experience has
led to an evolution of the basic technique to improve its usability in the real
world. It has also validated that the approach is a viable approach to collect
data on software faults.

8 Conclusion

Data sets of real software faults have the potential to enable the creation of
new tools for software engineering and programming language researchers. Our
previous experience shows that manual efforts to collect such data are tedious.
The AFID tool is a new approach for recording software fault data. A key ben-
efit of AFID is that the data it collects includes fault revealing test cases in
addition to a faulty version of the application and the fault correcting source
code change. This key results include (1) a technique to automatically record
software faults without requiring developer intervention, (2) the implementa-
tion of this technique in the AFID tool, (3) an evaluation of the overhead of
these techniques, (4) our experiences using the tool to record real software
faults, and (5) our experiences using AFID in the daily development environ-
ment of our research group, and (6) how we have improved AFID in response
to these experiences. Our study results indicate that AFID can automatically
record software faults and we continue to build a repository of software faults.
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