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Abstract—Since its first appearance more than 20 years ago,
PHP has steadily increased in popularity, and has become the
foundation of the Internet’s most popular content management
systems (CMS). Of the world’s 1 million most visited websites,
nearly half use a CMS, and WordPress alone claims 25% market
share of all websites. While their easy-to-use templates and
components have greatly simplified the work of developing high
quality websites, it comes at the cost of software vulnerabilities
that are inevitable in such large and rapidly evolving frameworks.

Intrusion Detection Systems (IDS) are often used to protect
Internet-facing applications, but conventional techniques struggle
to keep up with the fast pace of development in today’s web
applications. Rapid changes to application interfaces increase
the workload of maintaining an IDS whitelist, yet the broad
attack surface of a web application makes for a similarly verbose
blacklist. We developed ZENIDS to dynamically learn the trusted
execution paths of an application during a short online training
period and report execution anomalies as potential intrusions.

We implement ZENIDS as a PHP extension supported by 8
hooks instrumented in the PHP interpreter. Our experiments
demonstrate its effectiveness monitoring live web traffic for one
year to 3 large PHP applications, detecting malicious requests
with a false positive rate of less than .01% after training on
fewer than 4,000 requests. ZENIDS excludes the vast majority
of deployed PHP code from the whitelist because it is never used
for valid requests—yet could potentially be exploited by a remote
adversary. We observe 5% performance overhead (or less) for
our applications vs. an optimized vanilla LAMP stack.

I. INTRODUCTION

Content Management Systems (CMS) have taken a leading

role in web application development, largely because they

provide a vast assortment of powerful components that are

easily composed into a polished presentation with a convenient

user interface. But for the same reason, even a sophisticated

application may use only a small fraction of the framework

code that it deploys, and vulnerabilities in the remaining

code can expose the website to attacks. Table I shows that

three websites hosted by our group use just 4.5-11.7% of

the underlying framework. Compounding this is the highly

dynamic construction of PHP applications, in which code is

dynamically loaded from plain text files—and even user input

strings—and fundamental program elements such as function

call targets are often specified by string variables. From this

perspective, the diverse and flexible functionality provided by

the framework represents an important trade-off: it provides

convenience for development of the website, yet creates a

needless security liability for deployment of the site.

TABLE I: Application size vs. the fraction of application code that is
trusted by ZENIDS. Most of the untrusted code cannot be reached by
normal execution of the application in any configuration—yet can be
reached by attackers as a faux entry point, or via branch manipulation.

Source Lines Source Files

Original Trusted Original Trusted

WordPress 130,705 15,392 472 227

GitList 163,248 7,325 2,625 213

Doku 139,340 10,219 928 127

Instead of settling for a compromise between convenience

and security, we developed ZENIDS1 to accurately and effi-

ciently detect malicious intrusions. Users retain the freedom

to install, configure, customize and even extend any PHP

application. During a short online training period, ZENIDS

learns the set of execution paths that the deployed application

is using. The ZENIDS monitor raises an intrusion alert when

the execution of a request in an unprivileged session diverges

from the set of trusted execution paths. Since ZENIDS is

extremely sensitive to variations in execution, site changes

of any kind could result in a high rate of false positives—

for example, if a blogger writes a post having as-yet-unused

formatting such as a table, the PHP code that renders the

post in HTML may take different paths than for any previous

post. To accommodate natural evolution in an application’s

usage of its underlying framework, ZENIDS selectively trusts

new control flow paths that are directly associated with data

changes made by privileged users. This allows developers and

administrators to use any part of the framework’s rich feature

set, yet prevents abuse of both deployed code and dynamic

control flow branches that the site is not presently using.

A. Overview

To protect a website with ZENIDS, the administrator installs

the instrumented PHP interpreter with the ZENIDS extension

in an otherwise standard LAMP or WIMP stack. For applica-

tions that implement user privileges, a hook must be added in

the application’s PHP code to notify ZENIDS of login and

logout events. ZENIDS learns the set of features that site

visitors are currently using by recording execution traces to a

trusted profile for a short period of time. In monitoring mode,

ZENIDS raises an intrusion alert when the execution of an

unprivileged HTTP request diverges from the trusted profile.

1The source code of the PHP interpreter uses the prefix ZEND_* in honor of
authors ZEev and aNDi. Since our approach applies to interpreted languages
in general, we use the more common web 2.0 moniker “Zen” for our tool.
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Our experiments in Section VII demonstrate that ZENIDS

detects recent attacks against vulnerable applications, yet

rarely raises a false alert when deployed on the same

applications receiving live Internet traffic. After configuring

a WordPress site with 9 vulnerable plugins and a vulnerable

theme, ZENIDS detected attempts to exploit all 10 vulnera-

bilities, only raising false alerts on invalid form entries. We

recorded HTTP traffic to live deployments of WordPress, the

GitList repository viewer, and DokuWiki for 360 days, then

replayed the traffic to replica sites monitored by ZENIDS. The

false positive rate was less than .01%, yet ZENIDS raised

38,076 true alerts among more than 1.5 million requests.

Privileged users made changes to these sites during the exper-

iment that would have resulted in false alerts on every request,

but ZENIDS safely expanded the trusted profile, meanwhile

continuing to raise true alerts on malicious requests.

A trivial implementation of ZENIDS has 10× overhead vs.

a LAMP stack having typical optimizations. In Section VI

we employ redundancy elimination and caching techniques to

reduce overhead below 5% without compromising security.

B. Intended Usage Scenario

We envision ZENIDS being deployed both by web site

administrators and by cloud providers who wish to provide

an extra service to their users. Although our false positive rate

is extremely small, in many scenarios automatically blocking

traffic is unacceptable due to the small risk of blocking

legitimate visitor requests. Thus, we have designed ZENIDS

to provide users with alerts of potential attacks. Users can then

manually review the alerts and either write rules to drop the

malicious requests or whitelist the control flow as benevolent.

Our experiments show that the vast majority of ZENIDS alerts

correspond to real attacks. For higher risk deployments where

training ZENIDS on live web traffic is less practical, our

results show it is feasible to begin training with artificial or

trusted traffic, then complete the trusted profile by manually

reviewing alerts during an initial segment of live traffic.

C. Contributions

This paper makes the following contributions:

• A technique for recording a trusted profile of application

features that are currently used by unprivileged visitors.

• A taint-tracking technique to safely expand the trusted

profile according to changes made by trusted users,

meanwhile continuing to detect anomalous requests.

• An implementation of ZENIDS that supports all features

of PHP 7 and performs at low overhead on large web

frameworks such as WordPress and Symfony.

• An evaluation of the performance, usability and security

of ZENIDS in popular web applications facing live In-

ternet traffic and recently reported exploits.

II. THREAT MODEL

ZENIDS is designed to defend a PHP web application

against a typical remote adversary who does not have login

credentials, but may attempt to open a connection on the web

server using any port and protocol available to the general

public. The adversary can determine the exact version of the

protected PHP application and the PHP interpreter, including

ZENIDS, and has obtained the complete source code. A binary

attack on the PHP interpreter cannot change the execution of

the script other than to crash the process.

The adversary does not know when the ZENIDS training

period occurs, and is not able to access the trusted profile

without first compromising the protected application. Web

server authentication prevents untrusted uploads, except as

permitted by the protected application itself. At the time of

installation, the adversary had no opportunity to modify any

files of the protected application; i.e., we assume the original

installation is free of any backdoors that were specifically

deployed by the adversary as part of the attack. There may,

however, be backdoors in the application that are discoverable

by the adversary at the time of its public source code release.

III. SYSTEM OVERVIEW

ZENIDS protects a PHP application by raising an intrusion

alert when execution of an untrusted user’s request diverges

from known-safe behavior, as recorded in the trusted profile.

Fig. 1 depicts the workflow of a basic implementation of

ZENIDS. During an initial training period of configurable

duration, ZENIDS records the control flow graph (CFG) of

each request, which is just the union of all edges in the

opcode trace, including the authentication level at each edge.

At first there may be a high degree of variation among the

CFGs, indicating that training is not yet sufficient and should

continue. When the rate of unfamiliar control flow among

untrusted requests tapers off, the CFGs are merged into the

trusted profile by union (without path or context sensitivity),

preserving the lowest observed authentication level at each

edge. After the profile is deployed to the webserver, ZENIDS

consults it to evaluate the safety of requests from untrusted

users, raising an alert for edges that are not known to be safe.

Fig. 1: Deployment of ZENIDS begins by recording the CFG of each
request during an initial training period. These are merged offline into
the trusted profile, which is then deployed to ZENIDS for monitoring.
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A. Profiling

PHP interprets a script by first compiling it into opcode

sequences (e.g., one per function) and then interpreting the

sequences. Fig. 2 illustrates this, starting from (a) the source

code, which is compiled into (b) an opcode sequence, then

recorded by ZENIDS during execution to (c) the trusted

profile. Any opcode may jump within its sequence or enter

another sequence. From the source code perspective, a tran-

sition between opcode sequences represents an entry into any

PHP script segment—not necessarily a function call—but for

simplicity, ZENIDS models them all as ordinary calls:

a) Importing Script Files: When execution reaches an

include or require statement, the PHP interpreter exe-

cutes the body of the imported script—which encompasses

any code outside of class and function declarations—and then

adds any classes and functions to the appropriate namespaces.

ZENIDS models all forms of the include statement as a

function call to the script body of the imported file.

b) Callbacks: Built-in functions may implicitly invoke

script functions, for example if the script tries to set an

undefined object property, the PHP built-in accessor calls the

object’s __set() method as a fallback. ZENIDS models

such callbacks with an edge from the call site directly to the

callback (Fig. 2c), to avoid a nexus effect that would weaken

the trusted profile. For example, in an exploit of the WordPress

Download Manager plugin [1], the adversary creates a new

privileged user by manipulating the target of the PHP built-in

call_user_func(). If we allowed the built-in to become

a nexus, ZENIDS would not know which call site normally

(safely) reaches which callee, making the exploit undetectable.

c) Object Management: Structural methods like class-

loaders and destructors are invoked under complex condi-

tions that may vary across executions of the same HTTP

request. For consistency, ZENIDS creates an edge from a

symbolic system node to the corresponding script method (e.g.,

__destruct()). If the application should directly invoke

one of these methods (perhaps under adversarial influence),

ZENIDS will distinguish it as a conventional call edge.

d) Dynamic Code: The PHP language provides two

methods for dynamically evaluating a string as PHP code:

eval() and create_function(). Since the interpreter

compiles them as anonymous functions, ZENIDS models them

as function calls having dynamic targets (see Section IV-B).

B. Monitoring Granularity

To detect the RCE exploits that are being reported against

PHP applications today, it is only necessary to monitor the call

graph. This is largely because there are no reported techniques

for manipulating intra-procedural control flow into crossing

procedural boundaries, as is possible on other platforms.

Furthermore, the known compositional attacks at the inter-

procedural level always involve calls that do not occur in

normal execution (see Section IV-A). While it may be feasible

to craft more subtle exploits, there is presently no such threat

to the PHP ecosystem—and as we have shown, there are many

reasons to believe that such attacks may in fact be infeasible.

46 p u b l i c f u n c t i o n compi l e ( Twig Compiler $ c o m p i l e r )
47 {
48 i f ( count ( $ t h i s−>getNode ( ’ names ’ ) ) > 1) {
49 $compi l e r−>w r i t e ( ’ l i s t ( ’ ) ;

(a) PHP code sample from the Symfony template compiler Twig.

# Line Result Opcode Operand 1 Operand 2

0 46 - ZEND RECV $compiler -

1 48 - ZEND INIT FCALL count -

2 48 - ZEND INIT METHOD CALL getNode -

3 48 - ZEND SEND VAL EX "names" -

4 48 tmp #1 ZEND DO FCALL - -

5 48 - ZEND SEND VAR tmp #1 -

6 48 tmp #2 ZEND DO FCALL - -

7 48 tmp #3 ZEND IS SMALLER 1 tmp #2

8 48 - ZEND JMPZ tmp #3 +25

9 49 - ZEND INIT METHOD CALL $compiler write

(b) The sample (a) compiled by PHP into an opcode sequence.

(c) The trusted profile CFG of the opcode sequence (b). At opcode
#6, the callee count() is a built-in function that either counts built-
in collections such as arrays, or calls back to the object’s count()
method if it has one. ZENIDS models the callback as an edge
connecting opcode #6 directly to Twig_Node::count() to avoid
having hundreds of edges from a nexus count() node.

Fig. 2: Execution of a PHP code snippet under ZENIDS profiling.

C. Dynamic vs. Static Analysis

On many platforms such as C/C++, it is possible to construct

a substantially accurate control flow graph on the basis of static

analysis, avoiding the administrative overhead and potential

inaccuracy of dynamic profiling. This approach is not viable

for RCE exploits against PHP, because even though the source

code is always available, there is a common idiom of calling

functions by string name which defies static analysis. Since

a call by name has no structural properties to limit the set

of potential target functions, static analysis falls back to an

over-approximation that is multiple orders of magnitude too

coarse for security purposes. These call-by-name sites are quite

common, for example more than 100 occur in the WordPress

core alone. Section VIII-c discusses the limitations of several

web defenses that rely on static analysis.

D. Monitoring Ubiquity

A common weakness among intrusion detectors is that an

informed adversary can mimic trusted input, or mask those

aspects of the attack that the IDS is capable of observing.

For example, KBouncer [2] and ROPecker [3] use the Last

Branch Record register to detect a Return-Oriented Program-

ming (ROP) attack within the last n branches, asserting that

evidence of ROP can always be found within that window.

But [4] evades this “line of defense” by composing the
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attack with deliberately long ROP chains. Other naı̈ve defense

techniques have been similarly defeated by simple tricks

in [5] and [6]. In the context of ZENIDS, a vulnerability

leveraged by a given exploit is either present in or absent

from the trusted profile. If the vulnerability is absent, the

vulnerable code cannot be executed without triggering an alert.

For an exploit to go undetected, it must fully conform to

trusted control flow paths—including the execution of the

malicious payload. This approach potentially makes ZENIDS

significantly more robust to new threats than prior art.

IV. SYSTEM DESIGN

ZENIDS is implemented as a PHP extension supported by

8 callback hooks instrumented in the interpreter. Fig. 3 shows

the main components of the web server, as configured for our

experiments, with the hooks labeled H1-H5 (the other 3 hooks

serve trivial initialization purposes). A basic implementation

of ZENIDS only requires the first two hooks: H1 correlates

each compiled opcode sequence with its trusted profile (if the

sequence is trusted at all), and H2 validates each invocation of

an opcode sequence by matching it to an edge in the trusted

profile. Listings H1 and H2 present the essential functionality

of these hooks in pseudo-code.

A PHP deployment is not limited to the typical configuration

that we use for our experiments—it may incorporate numerous

extensions, interact with external data sources and services,

and be distributed across multiple servers having various

architectures and operating systems. But these factors do not

interfere with the ZENIDS detection mechanism. At its core,

the PHP interpreter is simply a recursive iterator over opcode

sequences, and to our knowledge there is no configuration that

substitutes or modifies the central Opcode Execution Loop. For

this reason, we expect the fundamental approach of ZENIDS

to be compatible with PHP deployments of all varieties.

PHP Interpreter Hook H1 Compile PHP code into op seq

key ← CANONICAL-NAME(op seq)
if key ∈ trusted seqs.keys then

trusted seq ← trusted seqs.get(key)
if IS-IDENTICAL(op seq, trusted seq) then

op seq.trusted seq ← trusted seq
else

ALERT(untrusted op sequence)
end if

end if

PHP Interpreter Hook H2 Enter target seq from op seq[i]

1: if op seq[i].target seq.trusted seq = NIL then
2: ALERT(untrusted app entry point)
3: else
4: key ← CANONICAL-NAME(op seq[i].target seq)
5: if key /∈ op seq[i].trusted targets then
6: ALERT(untrusted call)
7: end if
8: end if

Fig. 3: Components of a typical PHP deployment along with ZENIDS
hooks H1-H5 and fundamental RCE attack vectors A1-A5.

A. Attacks

Fig. 3 also labels five important attack vectors taken by

today’s corpus of RCE exploits (A1-A5). The pivotal role of

the Opcode Execution Loop in the PHP interpreter makes it

possible for ZENIDS to detect all five vectors in hook H2:

A1 Call By Name: When a function callee is specified as a

string constant or variable, PHP resolves the callee using

the set of functions defined dynamically during execution.

An exploit of the popular WordPress Download Manager

plugin creates a new user with administrator privileges by

manipulating the target of just one PHP call-by-name [1].

ZENIDS raises an alert at H2 on any untrusted call edge,

even if the call site and the callee are in the trusted profile.

A2 Object Injection: The format of serialized objects in

PHP specifies both the type and content of each field,

making it possible for the adversary to compose arbitrary

serialized instances. Dozens of object injection attacks

have been reported, such as CVE-2015-8562 against

Joomla in which the adversary executes arbitrary code by

fabricating a serialized session. In this scenario ZENIDS

will detect untrusted edges in the payload at H2.

A3 Magic Methods: PHP implicitly invokes specially named

“magic methods” in certain situations, for example a call

to an undefined method $a->foo() is forwarded to

$a->__call() with the name of the missing callee and

the arguments (as a fallback). Esser and Dahse combine

object injection with magic methods to create Property-
Oriented Programming attacks [7], [8] that can execute

arbitrary code. While the approach is more complex than

A2, the ZENIDS defense at H2 remains the same.

A4 Dynamically Included Code: The PHP include and

require statements can take a string variable argument,

allowing an intruder to import any file. Since ZENIDS

models these as calls, H2 will detect untrusted targets.

A5 Dynamically Interpreted Code: PHP can execute a plain

text string as code, making the input string vulnerable to

attack. ZENIDS models these dynamic opcode sequences

as dynamic imports and monitors them at H2.
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B. Canonical Names

For H1 and H2 to be reliable, CANONICAL-NAME() must

be consistent across executions, since ZENIDS uses it to

find trusted profile entries. While it might be trivial in many

languages, PHP raises several complications. To begin with,

the include and require keywords are compiled as state-

ments and executed in the opcode sequence (not pre-processed

like in C/C++), making it possible for conditional branches

to govern the set of imported source files. Function declara-

tions similarly allow for conditional compilation at runtime.

Combining these factors with namespaces, it is possible—

and very typical—for a PHP application to define the same

function identifier multiple times, often among many different

files (e.g., to implement a plugin interface). ZENIDS avoids

ambiguity in the canonical name using the following schemes:

• 〈filename〉.〈function-name〉.〈line-number〉
• 〈filename〉.〈classname〉.〈method-name〉.〈line-number〉
Dynamic code, such as from an eval() statement, is

correlated to the trusted profile by comparing opcode content,

since the origin of the code string can be difficult to determine.

C. Goals of the Basic Implementation

To focus our evaluation of ZENIDS (Section VII), the

three technical sections conclude with an enumeration of their

security and usability goals, notated SG# and UG# as follows:

SG1 Detect a broad variety of attacks, including known

exploits and live Internet exploits.

UG1 Minimize false alerts, especially in large programs

facing live Internet traffic for a long period of time.

V. SUPPORTING WEBSITE EVOLUTION

Changes to the content or configuration of the application

may occasionally cause a few new execution paths to be taken,

which would cause the basic implementation of ZENIDS to

begin raising false alerts. Instead, ZENIDS responds to trusted

changes by expanding the trusted profile to enable relevant

new code paths. When ZENIDS detects that a privileged user

has changed application state, for example in the database,

it initiates a data expansion event to add corresponding new

control flow to the trusted profile. Similarly, if the application

generates or modifies PHP source files in a way that conforms

to a trusted code generator, ZENIDS initiates a code expansion
event. The duration of an expansion is limited to a configurable

number of requests (2,000 in our experiments) to minimize

an adversary’s opportunity to manipulate the expansion into

trusting unsafe code. Hook H3 initiates expansions on the basis

of the sets tainted values and safe new sources, which

are maintained by system call monitors H4 and H5.

Listing H3 shows how ZENIDS adds edges to the trusted

profile when the expansion conditions are met. The first

condition initiates a data expansion (lines 4-5) at an untrusted

branch decision (line 2) when at least one value in the

branch predicate carries taint from an administrator’s recent

data change (line 3). The second condition initiates a code

PHP Interpreter Hook H3 Execute ith opcode of op seq

1: if mode = monitoring then
2: if IS-BRANCH(op seq[i]) &

branch /∈ op seq[i].trusted targets then
3: if branch.predicate ∈ tainted values then
4: mode← expanding
5: trust to← CONTROL-FLOW-JOIN(branch)
6: else if IS-CALL(branch) then
7: if call.target seq ∈ safe new sources then
8: mode← expanding
9: trust to← i+ 1

10: else
11: ALERT(untrusted call)
12: end if
13: end if
14: end if
15: else � mode = expanding
16: if IS-BRANCH(prev op) then
17: prev op.trusted targets ∪ {op seq[i]}
18: end if
19: if i = trust to then
20: mode← monitoring
21: else if IS-ASSIGNMENT(op seq[i]) then
22: tainted values ∪ {op seq[i].predicate}
23: end if
24: end if
25: PROPAGATE-TAINT(op seq, i, i+ 1)

expansion (lines 8-9) when an untrusted call (lines 2 and 6) is

made to a safe new source file (line 7). If neither expansion

condition is met, and the branch is any kind of call, then an

untrusted call alert is raised (line 11). During an expansion,

new branches are added to the trusted profile (line 17) and

taint is propagated across all assignments (line 22) and uses

of tainted operands (line 25). The expansion ends (line 20)

where the initiating branch joins trusted control flow (line 19).

A. Code Expansion Events

Since PHP applications often have repetitive source code,

many PHP libraries provide an API to generate new source

files at runtime on the basis of application-defined templates.

PHP Interpreter Hook H4 Store application state

if IS-TRUSTED-CODE-GENERATOR() then
safe new sources ∪ {new source}

else if IS-ADMIN(user) then
state taint ∪ {stored state× user.admin level}

end if

PHP Interpreter Hook H5 Load application state

if !IS-ADMIN(user) & loaded state ∈ state taint then
tainted values ∪ {loaded state}

end if
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For example, GitList uses the Symfony component Twig to

define the HTML page layout for each type of repository page:

file list, commit list, blame, etc. At runtime, Twig generates

corresponding PHP files on demand. Incorporating this kind of

dynamic code into the trusted profile is easy for ZENIDS if the

code generator runs during the training period. But a demand-

based code generator may run at any time—for example, in our

GitList experiment (Section VII-B), crawlers found unvisited

views several weeks after the 2-hour training period.

To continue trusting these known-safe code generators, each

time the application persists a state change to the database

or the filesystem, IS-TRUSTED-CODE-GENERATOR() in H4
determines whether the application has just written a safe new

source file. This function examines the following criteria:

1) Call Stack: At the API call to update the database or

write to a file, does the call stack match any of the code

generator call stacks recorded during the training period?

2) User Input Taint: If during training the application never

generated source code using values influenced by user

input, then ZENIDS checks whether the data for this state

change carries taint from user input. This criterion tracks

both directly and indirectly tainted values (and may be

disabled to avoid continuous taint tracking overhead).

3) Generator Visibility: Hook H4 additionally preserves

a snapshot of the persisted data—if during training the

application only generated source code via the PHP

persistence API, then a new source file will only be

trusted if it matches the last snapshot taken at H4.

B. Taint Tracking

The expansion events rely on propagation of taint from

user input and authorized state changes. User input is tainted

at HTTP input parameters and session values, while data

loaded by the application is tainted in H5 on the basis of

state taint. Function PROPAGATE-TAINT() in H3 (line 25)

transfers both colors of taint across assignments, compositional

operations such as arithmetic and comparisons, arguments to

function calls, and return values from functions. Hook H3
also implicitly taints all assignments that occur during an

expansion (line 22), since those assignments have as much

of a causal relationship to the taint source as the branch itself.

But ZENIDS does not implicitly taint assignments within

trusted code, even if it occurs under a tainted branch, because

those assignments must have already been made at some time

prior to the expansion event—before taint was present on

the predicate—indicating that the influence represented by the

taint is not pivotal to that already-trusted branch decision.

C. Evolution Goals

This enhancement to ZENIDS aims to improve usability

while maintaining the security goals of the basic implementa-

tion. In our evaluation we explore the following use cases:

UG2 Incorporate complex changes to control flow into

the trusted profile without raising false alerts.

SG2 Continue to raise legitimate untrusted call alerts

both during and after an expansion event.

VI. PERFORMANCE OPTIMIZATION

The overhead of branch evaluation in H2 and taint tracking

in H3 (line 25) could make a naı̈ve implementation of ZENIDS

unusable in a high-traffic deployment. Even checking for the

presence of taint in H3 (line 3) can increase overhead by an

order of magnitude. But since these expensive operations are

only necessary in certain scenarios, it is safe for ZENIDS to

elide them when conditions indicate that the operations will

always nop. For maximum efficiency, ZENIDS implements

three flavors of Opcode Execution Loop (Fig. 3), each taking

only the actions necessary for its designated context:

1) MonitorAll: Propagates taint, evaluates all branch targets.

• Reserved for profile expansion events (2,000 requests).

2) MonitorCalls: only evaluates call targets.

• This is the default for monitoring untrusted requests.

3) MonitorOff: ignores everything.

• Reserved for trusted users (negligible overhead).

Since PHP invokes the Opcode Execution Loop via function

pointer, switching is simply a matter of replacing the pointer.

The two monitoring modes are further optimized as follows:

MonitorCalls The first 4 lines of H2 are elided by lazily

grafting the set of safe call targets onto each PHP opcode.

ZENIDS cannot extend the 32-byte opcode struct because

interpreter performance relies on byte alignment, so instead

it borrows the upper bits of a pointer field (which are unused

in 64-bit Linux where the user-mode address space is much

smaller than 264). Specifically, a pointer into the trusted profile

is copied into a cache-friendly array, whose index is packed

into the spare bits of the opcode. Line 5 of H2 is further

optimized for call sites having only one trusted target: instead

of a trusted profile pointer, the array entry is a direct encoding

of the singleton target, allowing for bitwise evaluation. To

avoid expensive string comparisons, target opcode sequences

are identified by a hashcode of the canonical name.

MonitorAll Since ZENIDS maintains taint in a hashtable, the

accesses required for taint propagation could become expen-

sive under rapid iteration of hook H3 (Fig. 3). In addition,

some PHP opcodes might require a costly callback from the

interpreter because they affect complex data structures or are

implemented using inline assembly. Both sources of overhead

are alleviated by lazy taint propagation using a queue that is

locally maintained by simple pointer arithmetic.

When the interpreter copies internal data structures (e.g., to

expand a hashtable), taint must be tediously transferred to the

new instance. ZENIDS flags each data structure that contains

taint and elides this expensive transfer for untainted structures.

A. Synchronizing Evolution

For applications that store state in a database, the persisted

state taint (Listing H4) is updated by database triggers, since

it is non-trivial to determine from an SQL string what database

values may change (we assume instrumenting the database

engine is undesirable). But the query for state taint can be

expensive relative to the total turnaround time of a very simple
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HTTP request, even when our query uses a trivial prepared

statement. Instead, ZENIDS stores the request id of the last

privileged state change in a flat file and updates it from the

database every 20 requests. While this delay makes it possible

to raise up to 20 false alerts immediately after a state change,

it is unlikely because a significant state change often involves

multiple HTTP requests. For example, although the WordPress

permalinks feature can be enabled with just one radio button

selection, it takes at least 5 asynchronous HTTP requests to

process that change, and only the last one enables the feature.

B. Performance Goals
The goals of these optimizations are straight-forward. Since

this significantly increases the complexity of ZENIDS, we add

a usability goal to limit development and maintenance costs:

UG3 Reduce overhead to less than 5% on our benchmark

applications, as measured on real HTTP traffic.

UG4 Minimize the cost of developing and maintaining a

usable implementation of ZENIDS.

SG3 Maintain the existing security.

VII. EXPERIMENTAL EVALUATION

We conduct several controlled and real-world experiments to

demonstrate the ability of ZENIDS to meet our three security

goals (SG1-SG3) and four usability goals (UG1-UG4). We

begin with a controlled experiment to detect known exploits

(SG1) without raising false positives (UG1). Section VII-B

demonstrates similar results in the context of real PHP appli-

cations facing live Internet traffic. In Section VII-C the same

experiments additionally show the accuracy (UG2) and safety

(SG2) of the evolution feature. Performance optimizations

were enabled for the experiments to show that those im-

provements do not compromise security (SG3). Section VII-D

concludes with an evaluation of the ZENIDS runtime overhead

(UG3) and a discussion of development cost (UG4).

A. Monitoring a Vulnerable Application
We demonstrate that ZENIDS detects publicly reported

exploits by configuring a WordPress site with vulnerabilities

targeted by the 10 most recent WordPress exploits published

on exploit-db.com (as of June 18, 2016), excluding data-

only attacks and unavailable modules. This medley, shown in

Table II, shows that ZENIDS can detect a broad variety of

exploit strategies (SG1). For authenticity we configured and

exercised at least 30% of each module’s high-level features.

To train the trusted profile we invited common crawlers and

manually browsed the site for just a few minutes using a range

of mobile and desktop browsers. For modules having forms,

we entered a variety of valid and invalid data and uploaded

valid and invalid files. Then we enabled the ZENIDS monitor

and continued using the site to evaluate our goals:

SG1 We invoked each exploit and observed that (a) ZENIDS

raised the expected alert, and (b) the POC succeeded.

UG1 False positives only occurred when entering invalid

form data—all other requests were trusted by ZENIDS.

TABLE II: ZENIDS raises an alert during attempts to exploit vulner-
able plugins and themes in a WordPress site. These were the most
recent 10 WordPress exploits from exploit-db.com as of June
18, 2016, excluding data-only attacks and unavailable modules.

EDB-ID WordPress Module Exploit Detected

39577 AB Test Plugin �
39552 Beauty & Clean Theme �
37754 Candidate Application Form Plugin �
39752 Ghost Plugin �
39969 Gravity Forms Plugin �
38861 Gwolle Guestbook Plugin �
39621 IMDb Profile Widget �
39883 Simple Backup Plugin �
37753 Simple Image Manipulator Plugin �
39891 WP Mobile Detector Plugin �

B. Monitoring Live Applications

To demonstrate the effectiveness and usability of ZENIDS

in the real world, we recorded all public HTTP traffic for one

year to three PHP applications hosted by our research lab:

1) WordPress: Our lab website, which has 10 pages and

uses the “Attitude” theme (with no posts or comments).

2) GitList: The public repository viewer for software devel-

oped in our lab, based on the Symfony framework.

3) DokuWiki: A computer science class website containing

wiki-text markup, document previews and file downloads.

We conducted this experiment offline by replaying the

recorded HTTP traffic to a copy of the web server and also

crawling the site with utility wget. Table III shows the results

in terms of unique false positives and total false negatives. To

further substantiate the usability of ZENIDS, Table IV shows

these accuracy statistics under a range of training durations.

Exploit Detection (SG1): ZENIDS raised 38,076 true alerts

on a diverse array of attacks targeting dozens of applications

and using a broad range of exploit techniques. The majority of

alerts were raised in WordPress because every unrecognized

URL is directed to the WordPress permalink resolver. The false

negatives represent two kinds of failed attacks:

• Typical threats that were safely handled by application

code, e.g., invalid logins or unauthorized admin requests.

• Exploits that (a) target applications that we did not have

installed, and (b) did nothing to affect the control flow.

One especially interesting attack abused the WordPress xmlrpc

API to amplify brute-force password guessing. Not only was

it a real threat to our installation, it is also an example of a

legitimate API that ZENIDS does not trust—and rightly so,

because RPC tools are irrelevant for our simple lab website.

TABLE III: Alerts raised by ZENIDS while monitoring our lab web
server for 360 days. False negatives represent safely handled attacks
such as invalid logins, or attacks on applications that we do not host.

Intrusion Alerts

Requests
Total

False Positives False Negatives

Total Training Unique Rate # Rate

WordPress 248,813 595 36,693 3 .00001% 16679 .07%
GitList 1,629,407 298 1,744 1 <.000001% 0 0
DokuWiki 24,574 3,272 253 3 .0001% 0 0
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These experiments not only show that ZENIDS detects a

broad range of attacks, but also that it integrates effectively

into a diverse set of applications representing an important

cross-section of today’s PHP landscape. These frameworks

serve a large percentage of the world’s HTTP traffic and

support millions of websites ranging in significance from

personal homepages to household names in the Alexa top 100.

Minimize False Alerts (UG1): ZENIDS only raised 507

false alerts (3 unique) against WordPress in the entire year. A

broken link triggered 502 of them (2 unique) at the “guess

permalink” function—one might argue that these are true

alerts, since they do reflect an error in the site.

Improvements to ZENIDS could potentially eliminate all the

false positives in DokuWiki. Half were caused by the addition

of a tarball download to the wiki, which does not trigger

an expansion event because new control flow occurs before

the tainted tarball is loaded from the filesystem. ZENIDS

could enable this expansion by tainting operands at untrusted

branches and, after the request completes, checking backwards

for privileged user influence. The remaining false positives

were caused by crawlers reaching new pages, which could be

avoided by blocking suspicious requests from crawlers.

We experienced just one false positive in over 1.5 million

GitList requests despite training the trusted profile in just 2

hours—a total of 298 requests—highlighting the simplicity

of our dynamic approach vs. a traditional static analysis.

Our trusted profile for GitList covers 62 closures and several

dynamically generated PHP files, along with 33 distinct magic

methods reached from 54 call sites (excluding constructors and

destructors), and 327 callbacks from PHP built-in functions.

There were 25 callbacks to closures, which are especially

challenging for static analysis, yet easily identified at runtime.

Our first two goals imply that, ideally, the duration of the

training period should not significantly increase false positives

(UG1) or false negatives (SG1). Table IV shows that although

ZENIDS can be trained for a very short period of time, the

results are similar for much longer training periods.

C. Evolution

Each of our three applications experienced one expansion

event during the experiment. The largest event occurred in

WordPress when the site administrator enabled permalinks (at

request #53,310), which has the following effects on the site:

• Visitors may request any page by name. For example,

the original “ugly” URL http://ourlab/?p=18 is now also

reachable as http://ourlab/publications page/.

• Requests for the original URL forms /p= or /page id=

are rewritten by WordPress to the permalink URL.

• Visitors subscribing to a comment feed can use the

permalink form of the feed URL (which was requested

by crawlers even though comments were disabled).

A smaller data expansion occurred in DokuWiki after a

change to the layout of the start page and the wiki menu bar.

In GitList, a code expansion incorporated new view templates

into the trusted profile as they were dynamically generated.

TABLE IV: The duration of the training period has minimal impact
on the accuracy of ZENIDS alerts. False positives in DokuWiki could
potentially be avoided by improvements to ZENIDS. False negatives
represent attacks that failed to have any effect on control flow.

Intrusion Alerts

Training
Total

False Positives (unique) False Negatives

Requests # Rate # Rate

W
o

rd
P

re
ss 595 36,693 507 (3) .002% (.00001%) 16,679 .07%

1,188 35,826 507 (3) .002% (.00001%) 17,546 .07%

2,070 35,767 507 (3) .002% (.00001%) 17,605 .07%

4,128 35,727 507 (3) .002% (.00001%) 17,645 .07%

G
it

L
is

t 298 1,744 6 (1) < .000001% 0 0

862 1,744 6 (1) < .000001% 0 0

12,010 1,744 6 (1) < .000001% 0 0

72,068 1,744 6 (1) < .000001% 0 0

D
o

k
u

W
ik

i 1,462 364 224 (55) .009% (.002%) 0 0

3,272 253 101 (3) .004% (.0001%) 0 0

4,133 253 101 (3) .004% (.0001%) 0 0

5,559 217 65 (2) .003% (.0001%) 0 0

Safe Profile Expansion (SG2): Learning to trust the new

WordPress permalinks feature was the most risky of the three

expansion events, because the feature involves directing all

unrecognized URLs to WordPress for pattern matching. Since

this includes any exploit attempts, a weak implementation of

ZENIDS might mistakenly trust malicious control flow as part

of the expansion event. But manual analysis confirms that

all 144 newly trusted calls were strictly necessary to support

the permalinks feature. In fact, ZENIDS raised 114 intrusion

alerts during the expansion, including 9 attempts at known

WordPress plugin exploits (CVE-2015-1579 and [9], [10],

[11]), 2 invalid login attempts, 3 attempts to register new users,

6 requests for disabled features, and 36 unauthorized requests

for administrator pages. Following the expansion, ZENIDS

continued to raise alerts on thousands of malicious requests,

many of which used a valid WordPress permalink URL form.

The GitList expansion incorporated several new views into

the trusted profile, each having more than 100 SLOC. In

DokuWiki the expansion added 145 new SLOC. We did not

experience enough attacks targeting GitList or DokuWiki to

make an empirical case for the safety of those expansions, but

manual analysis confirms that every added call was strictly

necessary for ZENIDS to trust the newly enabled features.

The Twig template engine in GitList conforms to all three

characteristics of a disciplined code generator, indicating that

ZENIDS successfully detected the three corresponding criteria

in hook H4 when the new views were generated.

Sufficient Profile Expansion (UG2): No false positives

occurred in any of the three features that initiated expansion of

the trusted profile. The WordPress permalinks feature supports

many URL variations and a complex resolution mechanism,

and although it was heavily exercised for the 9+ months

during which permalinks were enabled, ZENIDS trusted all

the new code paths on the basis of the 2,000 request expansion

period. The new GitList views and DokuWiki menu layout also

activated new URL forms with additional URL resolution, and

these were fully enabled after the expansions completed.
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D. Performance (UG3)

We evaluated the performance of ZENIDS by replaying a

contiguous segment of the recorded HTTP traffic from the

experiment in Section VII-B. To avoid bias we selected a

segment having a representative frequency of expansion events

(though none incorporated new control flow). The web server

is an Intel Xeon E3-1246 v3 with 32GB RAM and a solid

state drive, configured with a LAMP stack running on Ubuntu

14.04: Apache 2.4.7, MySQL 5.5.49, and PHP 7.1.0 alpha 3.

To show that ZENIDS performs well in a real deployment

scenario, we configured optimizations that would typically be

used for high-traffic PHP websites. For example, our deploy-

ment uses the popular opcache extension, which alleviates

compilation overhead by caching the opcode sequences. We

also chose the latest stable build of PHP which includes

significant core optimizations such as global register allocation

for the script instruction pointer and frame pointer. We enable

all optimizations in opcache and use gcc optimization flags

-O3 -march=native to obtain peak performance for the

baseline (vanilla) configuration of the PHP interpreter.

After configuring ZENIDS with the same trusted profile that

we reported in Section VII-B, we replayed the HTTP requests

synchronously to isolate the PHP interpreter’s execution time

from process and thread scheduling factors. Table V shows

the overhead is less than 5% for all our applications.

Instrumentation Overheads (UG4) The cost of developing

and maintaining ZENIDS is an important factor in its overall

performance as a practical security tool. Although there is

significant effort involved, this burden becomes progressively

lighter as the user base grows, since the work only needs to

be done once for each version of the PHP interpreter.

The ZENIDS PHP extension consists of 20KLOC of code,

and we additionally instrumented 8 hooks for a total of 317

lines of code in the PHP interpreter source. For applications

that store state in a database, ZENIDS requires a database

schema to contain the state taint that is used by hooks H4
and H5 to support data expansions. The schema consists of

two small tables, plus one trigger per application table.

For PHP applications having an authentication scheme,

the login function must be instrumented with callbacks to

set_user_level($level), which is provided by the

ZENIDS extension as a PHP built-in function. The $level
argument is an integer indicating the new authentication level,

for example in WordPress we use the application’s role_id.

Placing the callbacks was simple in both WordPress and

Doku: for each application, we inserted three callbacks in one

source file immediately following a log statement indicating

successful login or logout (GitList has no authentication).

E. Verifiability

The ZENIDS prototype is open-source and can be found at

http://www.github.com/uci-plrg/zen-ids. Since the data used in

our experiments contains private user information, we are not

able to publicly release it. However, our repository provides

instructions for conducting similar experiments in ZENIDS.

TABLE V: Runtime overhead of ZENIDS vs. an optimized vanilla
LAMP stack, measured as the geometric mean of 10 runs.

WordPress GitList DokuWiki

Runtime Overhead 4.1% 4.6% 4.5%

VIII. RELATED WORK

Many recent approaches to the problem of intrusion de-

tection are successful against specific categories of vulnera-

bilities, such as cross-site scripting (XSS) or SQL injection

(SQLi), but none of them has proven effective against remote

code execution (RCE) exploits. For example, the WordPress

plugin MuteScreamer [12] was once commonly used to protect

WordPress sites, but it only supports a manual blacklist of re-

quest patterns, making it vulnerable to mimicry and incapable

of defeating a zero-day attack. The comprehensive coverage

of the trusted profile makes it possible for ZENIDS to surpass

some limitations of these otherwise successful techniques.

a) Input Filtering: For applications having a relatively

systematic public interface, exploits can be detected with

high accuracy by observing patterns in user input. Commonly

deployed tools are Snort [13] and Apache ModSecurity [14],

which block known attacks based on a manually maintained

blacklist. But for today’s complex and highly dynamic PHP

applications, this approach performs poorly because (a) a

single vulnerability can be compromised using distinct crafted

inputs, (b) the frequency of blacklist updates would increase

by several orders of magnitude (for example, wordpress.org

currently offers over 46,000 plugins, most of which are con-

tinually in development), and (c) blacklist approaches cannot

defeat zero-day attacks, yet new exploits against WordPress

alone are reported almost daily.

A variant known as anomaly detection relies instead on a

whitelist of normal application behaviors, but the whitelist

can be difficult to construct. One approach [15] requires

an expert to manually define a set of policies, which also

must be maintained to accommodate ongoing customization,

configuration changes, and even application state changes.

Several alternative techniques formulate the whitelist in sim-

pler terms—for example, n-grams of packet bytes [16], [17],

or properties of HTTP request attributes such as string length,

characters sets, token sets [18], [19]—and learn the whitelist

by observing a set of known-normal requests (obtained by

manual analysis). Many of these approaches are subject to

mimicry or evasion tactics because the whitelist is only

indirectly related to program semantics. Another weakness

is that the training time is typically quite long—from 8%

up to 50% of the experiment’s reported request set in suc-

cessful techniques. Recent investigation into these approaches

no longer mentions web applications, suggesting that the

increasingly dynamic interaction between browser and server

inhibits convergence of the whitelist. Pure machine learning

approaches have mediocre results on artificial benchmarks

such as the DARPA datasets [20], and have rarely been used

in practice, where they typically perform much worse [21].
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b) Introspective Anomaly Detection: A different n-gram

approach observes the internal execution of the application

on the server and learns a whitelist of short system call se-

quences [22]. This approach turns out to be highly susceptible

to mimicry—isolating the sequence of system calls by name

(only) yields a vague representation of the application that

allows the attacker far too much flexibility. Similar approaches

based on finite state automata [23], [24] were difficult to apply

in practice (no experiments were reported).

c) Static Analysis: Instead of attempting to detect ex-

ploits at runtime, several techniques focus on finding vulnera-

bilities offline so the application can be secured by simply

patching. Conventional static analysis has been unable to

find many important attack vectors in stateful, session-based

applications, so [25] uses an SMT solver along with advanced

formulation of constraints on string dataflow and program

logic to find several new RCE exploits in large PHP applica-

tions. While this approach has some success, the authors admit

many vulnerabilities cannot be found this way. For example,

the implementation has limitations at dynamic constructs such

as variable array indices, which are very common in PHP—in

the version of phpMyAdmin reported in the experiment, 25%

of all array accesses use a variable index.

Other approaches are primarily effective against XSS and/or

SQLi vulnerabilities. To improve coverage of the static anal-

ysis, [26] partitions it into 3 levels of granularity: intra-block,

intra-procedural and inter-procedural. Both WebSSARI [27]

and Saner [28] combine static and dynamic analysis to de-

tect missing authentication checks; WebSSARI automatically

patches the code, while Saner verifies each result by dynam-

ically generating an exploit. Pixy [29] employs taint tracking

to find vulnerable handling of string variables. The authors of

all these techniques suggest their approaches may also work

well for other kinds of exploits, including RCE—but they also

admit limitations at dynamic statements such as include
with a variable operand, which are a primary targets of RCE

exploits. Another limitation of these approaches is that they

disregard client-side JavaScript, making it difficult for them to

find all the application entry points.

d) Dynamic Analysis: Exploit detection techniques that

share our dynamic approach are highly specialized to partic-

ular kinds of vulnerabilities other than RCE. ScriptGard [30]

instruments both the client and server to dynamically patch

faulty authentication code. Noncespaces [31] randomizes sen-

sitive values to prevent client-side tampering. Diglossia [32]

and SQLCheck [33] employ efficient taint tracking to detect

SQLi. To our knowledge, ZENIDS is the first such dynamic in-

strumentation approach to focus specifically on RCE exploits.

A. Defenses for Other Platforms

Some important defenses that have been developed for other

platforms cannot be directly applied to RCE exploits in PHP,

yet are still relevant to the ZENIDS approach.

A large body of CFI research has focused on reducing

overheads [34], [35], [36], [37] through minimizing dynamic

checks. Unfortunately, researchers found these simplifications

open the application to attacks [5], [38], [39], [40], [41]. In

response, researchers have developed newer, more restrictive

approaches [42], [43] with higher overheads. Some compiler-

based approaches achieve low overhead by protecting only

forward control flow edges [44], [45]. OpaqueCFI [46] com-

bines randomization with simple range checks, which weakens

the constraints to improve runtime efficiency, but in a way

the adversary cannot easily reason about. Several other CFI

approaches target specific attacks [47], [48], [49], [3], [2], such

as ROP, but may not be robust to new types of attacks. Recent

work has shown that many of these approaches are vulnerable

to attack variants [4], [6]. ZENIDS is able to maintain a usable

level of performance while comprehensively monitoring inter-

procedural control flow at runtime against the trusted profile.

Software diversification [50], [51] introduces uncertainty for

the attacker by generating a physically distinct yet functionally

identical version of a compiled binary for each user, but is not

able to deter exploits that manipulate source-level semantics.

The logging framework BlackBox [52] employs learning to

isolate potential exploits of COTS binaries, building a whitelist

by observing real executions. ZENIDS is similarly able to

isolate anomalies in the execution of dynamically specified

branch targets, dynamically generated code strings, and PHP

files that did not exist at the time of initial deployment.

The Android permission model is coarse grained, making it

possible for adversaries to access resources that are allowed by

the permissions but are irrelevant to the application. In [53],

an offline dynamic analysis mines the application for normal

resource usage, and a runtime sandbox limits the application to

those refined permissions. This approach differs from ZENIDS

in that it focuses on constraining resource abuse.

Clearview [54] uses learning to patch software errors. A

key difference is that Clearview focuses on generating repairs,

relying on external mechanisms for error detection, whereas

ZENIDS focuses directly on detecting attacks.

IX. CONCLUSION

We presented ZENIDS, a tool for identifying malicious

activity in PHP applications. During a short learning phase,

ZENIDS observes a set of normal executions and encodes

those application behaviors in a trusted profile. ZENIDS then

raises an intrusion alert when it observes untrusted application

behaviors. ZENIDS employs taint-tracking to enable new

application behaviors that result from trusted state changes,

including privileged user activity and application code gener-

ators. Our results show that ZENIDS can protect real world

PHP applications from known exploits and can detect a

number of real world attacks initiated by actual adversaries.
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[39] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in S&P, 2014.

[40] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in USENIX
Security, 2015.

[41] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-
grained control flow integrity,” in CCS, 2015.

[42] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi:
Cryptographically enforced control flow integrity,” in CCS, 2015.

[43] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
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