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Abstra
t

Over the past few years, mainstream 
omputing has shifted from isolated personal 
omput-

ers to networks of 
omputational devi
es. As a result the 
lient-server programming model

has be
ome in
reasingly important. These servers often have very strong performan
e and

reliability 
riteria.

We did an empiri
al study of di�erent server ar
hite
tures, developed a novel thread-per-


onne
tion to event-driven transformation, and developed a performan
e model to predi
t

server performan
e under various server ar
hite
tures.

We 
onsidered four di�erent server ar
hite
tures: a thread-per-
onne
tion ar
hite
ture

built on a kernel-level thread implementation, a thread-per-
onne
tion ar
hite
ture built on

a user-level thread implementation, an automati
ally generated event-driven ar
hite
ture,

and a thread pooled ar
hite
ture.

Our empiri
al study 
onsisted of evaluating the di�erent server ar
hite
tures a
ross a

suite of ben
hmarks 
onsisting of an e
ho server with di�erent traÆ
 patterns, a time server,

a http server, a sto
k quote server, a game server, and a 
hat server.

We modeled the exe
ution time of the servers as having an ar
hite
ture independent


omponent and an ar
hite
ture dependent 
omponent. The ar
hite
ture dependent 
ompo-

nent in
ludes implementation dependent overheads su
h as thread 
reation, obje
t in
ation,

syn
hronization, and sele
t pro
essing.

The performan
e model works well for all the servers we ben
hmarked. The event-driven

transformation resulted in speedups of up to a fa
tor of 2 and slowdowns of up to a fa
tor of

3 relative to the thread-per-
onne
tion ar
hite
ture using the kernel-level threads pa
kage.

From the empiri
al study, one �nds that no single server ar
hite
ture works best for all

servers. In fa
t, the optimal server ar
hite
ture for a given server depends on the usage

pattern. We observed both the extreme speedup and slowdown mentioned for the event-

driven server ar
hite
ture for the e
ho server. These ben
hmarks di�er only in their 
lient

traÆ
 patterns.

Thesis Supervisor: Martin Rinard

Title: Asso
iate Professor of Ele
tri
al Engineering and Computer S
ien
e

2



A
knowledgments

I owe a debt of gratitude to many people, for their assistan
e and guidan
e in my resear
h.

First, to my advisor, Martin Rinard, for without his guidan
e, patien
e, en
ouragement,

wisdom, and help this proje
t 
ould not have been done.

I'd like to thank S
ott Ananian for his part in developing the FLEX 
ompiler, answering

my endless stream of questions regarding FLEX, �xing my long list of bug reports, and for

�nally getting the relinker to work.

I'd like to thank Karen Zee, Ovidiu D Gheorghioiu, and Catalin A Fran
u for their

assistan
e in developing the event-driven transformation and asyn
hronous I/O libraries.

I'd like to thank Alexandru Sal
ianu for his meta-
allgraph implementation, support,

and assistan
e.

I'd like to thank Patri
k Lam, Viktor Kun
ak, Darko Marinov, Maria Cristina Mari-

nes
u, and Radu Rugina for their support and assistan
e.

I'd like to thank my parents and my brother for their moral support. I'd like to thank

all of the great friends I've made during my stay at MIT for making MIT enjoyable.

I was supported by a Fannie and John Hertz Foundation Fellowship.

3



Contents

1 Introdu
tion 8

2 Server Ar
hite
tures 11

2.1 Thread-per-
onne
tion ar
hite
tures . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Thread Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Kernel-level Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 User-level Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Thread Pooled Ar
hite
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Event-driven Ar
hite
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Qualitative Di�eren
es in Server Ar
hite
tures . . . . . . . . . . . . . . . . 17

2.4.1 Di�eren
es in Performan
e of the Server Ar
hite
tures . . . . . . . . 18

2.4.2 Di�eren
es in Programming the Server Ar
hite
tures . . . . . . . . . 18

3 Event-driven Transformation 24

3.1 Continuation Passing Style Conversion . . . . . . . . . . . . . . . . . . . . . 24

3.2 Basi
 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Optimizations to the Basi
 Transformation . . . . . . . . . . . . . . . . . . 27

3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Empiri
al Evaluation 35

4.1 Performan
e Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Dis
ussion of Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Thread Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Obje
t In
ation and Syn
hronization . . . . . . . . . . . . . . . . . . 37

4



4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Measuring Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Ben
hmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Ben
hmark Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Ben
hmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 The Serial E
ho Ben
hmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 Quantitative Evaluation of the Performan
e Model . . . . . . . . . . . . . . 45

4.10 Dis
ussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11 Operating System Support for Event-driven Servers . . . . . . . . . . . . . 49

5 Con
lusion 50

5



List of Figures

2-1 Single Threaded version of an E
ho Server . . . . . . . . . . . . . . . . . . . 11

2-2 Runtime Thread version of an E
ho Server . . . . . . . . . . . . . . . . . . . 13

2-3 Thread Pooled version of an E
ho Server . . . . . . . . . . . . . . . . . . . . 20

2-4 Event-Driven version of Conne
tion Thread . . . . . . . . . . . . . . . . . . 21

2-5 Event-Driven version of Worker Thread . . . . . . . . . . . . . . . . . . . . 22

2-6 Event-Driven version of Worker Thread . . . . . . . . . . . . . . . . . . . . 23

3-1 Original Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3-2 Example of CPS Conversion for a Java Program . . . . . . . . . . . . . . . 25

3-3 Event-Driven version of Conne
tion Thread . . . . . . . . . . . . . . . . . . 32

3-4 Event-Driven version of Worker Thread . . . . . . . . . . . . . . . . . . . . 33

3-5 Event-Driven version of Worker Thread . . . . . . . . . . . . . . . . . . . . 34

4-1 E
ho and Time Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4-2 Game, Web, Chat, Phone and Quote Servers . . . . . . . . . . . . . . . . . 45

4-3 Serial E
ho Ben
hmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-4 Serial E
ho Ben
hmark with Sele
t Overheads . . . . . . . . . . . . . . . . . 47

6



List of Tables

4.1 Mi
roben
hmark Results for Server Ar
hite
tures . . . . . . . . . . . . . . . 39

4.2 Mi
roben
hmark Results for Sele
t Evaluation . . . . . . . . . . . . . . . . 44

4.3 Performan
e Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 48

7



Chapter 1

Introdu
tion

As mainstream 
omputing environments shift from isolated personal 
omputers to networks

of 
omputers, server programs are be
oming an in
reasingly important 
lass of appli
ation.

We see a wide range of server appli
ations deployed on the Internet today in
luding su
h

examples as web servers, instant message servers, IRC servers, news servers, and game

servers among many others.

The 
lient-server model is a simple abstra
tion to use when developing network-based

appli
ations. The server typi
ally a

epts multiple in
oming 
onne
tions and provides some

sort of servi
e. The 
lient 
onta
ts the server to use whatever servi
es the server provides.

A 
ommon example of this intera
tion o

urs in the web. Web servers su
h as Apa
he[1℄

provide the servi
e of delivering web pages. Web browsers su
h as Nets
ape 
onta
t a web

server of interest to request web pages.

Reliability and performan
e are serious 
on
erns for server software. Businesses often

use servers in environments su
h as ele
troni
 
ommer
e where failure translates into dire
t

loss of in
ome. Higher performan
e server software requires fewer ma
hines for a given

task, whi
h simpli�es maintenan
e and saves money. In this report, we evaluate a variety

of ar
hite
tures used to implement servers and their performan
e impli
ations.

Industry uses the programming language Java[11℄ for many server side appli
ations. For

example, many websites use the Volano 
hat server[12℄, a Java server appli
ation. Server

appli
ation developers have an interest in Java partly be
ause it brings many modern lan-

guage features su
h as a strong type system and garbage 
olle
tion to mainstream use.

These features allow Java to provide many safety guarantees that languages like C do not
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provide. Furthermore, Java's 
exible se
urity model aids in the development of se
ure server

appli
ations.

Features of the Java language and runtime su
h as memory management and safety

guarantees are very attra
tive when developing server appli
ations. One important 
lass of

errors that Java prevents is bu�er overruns. In re
ent years, up to 50% of the CERT advi-

sories were due to bu�er overruns[13℄. Bu�er overruns o

ur when a programmer allo
ates

a �xed size memory region in whi
h to store information, and then the programmer allows


ode to write data beyond the end of the region. This typi
ally o

urs in C programs that

use library routines. The problem is that a mali
ious atta
ker 
an use these bugs to exe
ute

arbitrary 
ode. Sin
e Java provides array bounds 
he
ks, bu�er overruns are impossible.

When we design servers, we need to 
onsider several fa
tors. Although all servers a

ept

multiple 
onne
tions and provide some servi
e, they have very di�erent design 
on
erns.

Some servers have very short intera
tions with 
lients, and in these 
ases, the overhead

of setting up a 
onne
tion is 
riti
al. Other servers have long intera
tions with many


lients, and in these 
ases the s
aling behavior of the server with respe
t to the number of

simultaneous 
onne
tions is more important.

Programmers have used many di�erent programming models for handling multiple 
on-

ne
tions in servers. We 
onsider the following programming models in this report:

Thread-per-
onne
tion model In this model, there is a single main thread whi
h a
-


epts 
onne
tions and a worker thread for ea
h opened 
onne
tion. For the worker thread,

the programmer 
on
erns himself or herself with the intera
tions for just one 
lient. The

simpli
ity of this model makes it very attra
tive. The thread pooled ar
hite
ture uses this

same programming model, the only di�eren
e is how the program assigns 
onne
tions to

threads.

Event-driven model In this model, the programmer thinks in terms of I/O events and

responses the server makes to these events. This model 
an be more 
ompli
ated to develop

for, sin
e the programmer must expli
itly manage I/O events.

In this report, we evaluate several server ar
hite
tures in
luding the thread-per-
onne
tion

ar
hite
ture with either kernel-level (or native) threads or user-level (or green) threads, an

automati
ally generated event-driven asyn
hronous I/O ar
hite
ture, and a thread-pooled

9



server ar
hite
ture. We develop a performan
e model for the various ar
hite
tures, and

evaluate the performan
e model over a range of server ben
hmarks.

A se
ond 
ontribution of this report is the development of a novel 
ompiler transforma-

tion from a thread-per-
onne
tion ar
hite
ture to an event-driven ar
hite
ture.

We did all of the implementations using the FLEX 
ompiler framework[2℄. FLEX is a

full featured, resear
h Java 
ompiler developed by our group. Our group designed FLEX

to fa
ilitate full and partial program analysis and transformations.

10



Chapter 2

Server Ar
hite
tures

Figure 2-1 presents a very simple e
ho server design. This server a

epts one in
oming


onne
tion at a time and e
hoes whatever the 
lient sends ba
k to the 
lient. The problem

with this server is that it is often desirable to allow the server to serve more than one 
lient

at a time.


lass E
ho {

stati
 publi
 void main(String args[℄)

throws IOEx
eption {

ServerSo
ket s = new ServerSo
ket(1000); //Open So
ket

byte buffer[℄ = new byte[100℄;

while (true) {

So
ket 
lientSo
ket = s.a

ept(); //Wait for in
oming 
onne
tion

try {

//Get stream obje
ts

OutputStream out = 
lientSo
ket.getOutputStream();

InputStream in = 
lientSo
ket.getInputStream();

while (true) {

int length = in.read(buffer, 0, buffer.length); //Read input from 
lient

if (length == -1) break;

out.write(buffer, 0, length); //Send input ba
k to 
lient

}


lientSo
ket.
lose(); //Close so
ket when done

} 
at
h (IOEx
eption e) {

e.printSta
kTra
e();

}

}

}

}

Figure 2-1: Single Threaded version of an E
ho Server

Programmers have developed many di�erent approa
hes to handling multiple 
lients

simultaneously with one server. The simplest approa
h used is similar to simply running

many 
opies of the single threaded server. We refer to this approa
h as a thread-per-


onne
tion ar
hite
ture. Whenever a new 
onne
tion o

urs, the server simply starts a

11



new thread to handle intera
tions with this 
onne
tion. The programming model for this

approa
h 
onsists of 
on
eptual threads that ea
h handles a single 
onne
tion. If a server

servi
es thousands of 
lients, all of the operating system bookkeeping to keep tra
k of the

various threads 
an be
ome quite expensive. Single threaded solutions 
an avoid some of

this overhead.

Another approa
h taken to handling multiple 
lients with one server is to have one thread

keep tra
k of all of the 
onne
tions. This thread 
ontinuously 
he
ks for new 
onne
tions and

other events from any 
lients that require attention and runs the appropriate 
ode to handle

the event that o

urred. We refer to this server design as an event-driven ar
hite
ture. The

programming model for this approa
h 
onsists of events and responses to these events that

the server makes.

In this 
hapter, we present in detail the thread-per-
onne
tion ar
hite
ture using either

the kernel-level or the user-level threads pa
kages, the thread pooled ar
hite
ture, and the

event-driven ar
hite
ture. We dis
uss qualitative advantages and disadvantages of ea
h of

these server ar
hite
tures. We present quantitative results in Chapter 4.

2.1 Thread-per-
onne
tion ar
hite
tures

Thread-per-
onne
tion or pro
ess-per-
onne
tion ar
hite
tures are perhaps the simplest to

develop sin
e one 
an use the threading me
hanism to manage the 
ontrol for the many


onne
tions servers may have. This server ar
hite
ture allows the programmer to fo
us on

the 
ommuni
ations ne
essary for a single 
onne
tion. The thread pa
kage then takes 
are

of managing the multiple 
onne
tions through the threading me
hanism.

In Figure 2-2, we show a simple example of a server written using a thread-per-
onne
tion

ar
hite
ture. In this example, the main thread waits for an in
oming 
onne
tion. Whenever

an in
oming 
onne
tion o

urs, the main thread spawns o� a worker thread and passes the

in
oming 
onne
tion o� to the worker thread. Note that the worker thread 
ode only

expli
itly handles one 
onne
tion.

Thread-per-
onne
tion ar
hite
tures typi
ally follow this simple design pattern. For

ea
h in
oming 
onne
tion, the server spawns a worker thread. The 
ode for the worker

thread only needs to 
on
ern itself with the one 
onne
tion that it manages.

The simpli
ity of design that this ar
hite
ture provides makes it very attra
tive for

12




lass E
ho {

stati
 publi
 void main(String args[℄)

throws IOEx
eption {

ServerSo
ket s = new ServerSo
ket(1000); //Open So
ket

while (true) {

So
ket 
 = s.a

ept(); //Wait for in
oming 
onne
tion

Worker w = new Worker(
);

w.start(); //Start thread to handle in
oming 
onne
tion

}

}

}


lass Worker extends Thread {

So
ket 
lientSo
ket;

OutputStream out;

InputStream in;

Worker(So
ket s) {


lientSo
ket = s;

}

publi
 void run() {

try {

//Get stream obje
ts

out = 
lientSo
ket.getOutputStream();

in = 
lientSo
ket.getInputStream();

byte buffer[℄ = new byte[100℄;

while (true) {

int length = doread(buffer); //Read input from 
lient

if (length == -1) break;

out.write(buffer, 0, length); //Send input ba
k to 
lient

}


lientSo
ket.
lose(); //Close so
ket when done

} 
at
h (IOEx
eption e) {

e.printSta
kTra
e();

}

}

int doread(byte[℄ buffer) throws java.io.IOEx
eption {

return in.read(buffer, 0, buffer.length);

}

}

Figure 2-2: Runtime Thread version of an E
ho Server

qui
kly developing and debugging servers. Unfortunately, this ar
hite
ture has to pay some-

times very expensive operating system overheads for thread 
reation and management.

The a
tual overheads that one pays depend greatly on the thread implementation. In

this proje
t, we 
onsider two thread implementations: one using the LinuxThreads kernel-

level pthreads implementation and another using a lightweight user-level threads pa
kage.

2.1.1 Thread Implementations

Thread pa
kages provide programs with the means of running multiple 
omputations 
on-


eptually at on
e. Thread pa
kages also typi
ally provide fun
tionality for 
ontrolling the

exe
ution of multiple threads and fun
tionality for sharing resour
es.

Programmers use two basi
 approa
hes to provide the 
apability of running multiple

13




omputations at on
e. One approa
h is to swit
h between threads. The kernel 
an do the

thread swit
hing as in kernel-level threads, or the program 
an use signals and/or expli
it

thread swit
hes in library 
alls as is often the 
ase in user-level thread pa
kages. A se
ond

approa
h is to have multiple pro
essors on a ma
hine and to run the threads on di�erent

pro
essors. However, if the system has more threads than pro
essors, the thread pa
kage

must share the pro
essors between multiple threads. The threads pa
kage does this by

having the pro
essor swit
h between threads, whi
h is a multipro
essor extension of the

�rst approa
h. This swit
hing has the downside of in
urring additional operating system

overheads and hurting 
a
he performan
e.

Some means of 
oordinating threads is ne
essary. Thread pa
kages often provide syn-


hronization fun
tionality. They also typi
ally provide some sort of lo
king me
hanism to

guarantee ex
lusive a

ess to the lo
k and some sort of wait and signal me
hanism.

Threads typi
ally live in the same address spa
e, and they share resour
es su
h as �le

des
riptors for open �les and streams. These shared resour
es allow programmers to easily

pass obje
ts and open �les between threads. This di�ers from the 
ase of separate pro
esses,

whi
h typi
ally do not share the same address spa
e or �le des
riptors.

Programmers 
ommonly take two basi
 approa
hes to implement threads. One approa
h

is to allow the operating system kernel to handle s
heduling and I/O for the threads. We

refer to this approa
h as kernel-level threads. A se
ond approa
h is to allow libraries in

user spa
e to handle s
heduling and I/O for the threads. We refer to this approa
h as user-

level threads. We dis
uss these two approa
hes and the implementations in the following

se
tions.

2.1.2 Kernel-level Threads

One thread system FLEX's runtime supports is LinuxThreads[14℄. The LinuxThreads li-

brary provides kernel-level thread support. The linux kernel handles s
heduling of threads

and I/O.

Our runtime implements kernel-level threads using the LinuxThreads kernel-level 
lone

based pthread implementation. This implementation allo
ates a pthread for ea
h Java

thread. The kernel handles the thread s
heduling and I/O.

The s
alability of LinuxThreads has many limitations. The Linux kernel has a limit

on the number of running pro
esses, LinuxThreads has a limit on the number of threads

14



it 
an manage, virtual memory spa
e pla
es limits on the number of threads that 
an be


reated be
ause ea
h thread reserves virtual memory for its sta
k, and the Linux kernel has

algorithms that s
ale with the number of pro
esses[14℄.

Another disadvantage of kernel threads is that they are often quite expensive to allo
ate.

We found this true for LinuxThreads. On our ben
hmark platform, a 275 Mhz StrongARM

ma
hine, a Java thread 
reation using LinuxThreads takes 2.2 millise
onds.

An advantage of using kernel-level threads is that they handle the Java I/O model very

naturally. One simply 
alls the 
orresponding blo
king I/O primitive and allows the thread

to blo
k. In this way, the program only in
urs one system 
all overhead for ea
h I/O request.

2.1.3 User-level Threads

The FLEX runtime also supports user-level threads. User-level threads provide threading

support using only primitives available to user spa
e programs. The user-level threads pa
k-

age provides thread multiplexing and I/O primitives. Part of the 
ompli
ation of developing

a user-level threads pa
kage is that the user-level threads pa
kage 
annot use blo
king I/O


alls, as doing so would 
ause all of the threads to halt. Instead, the la
k of multiple op-

erating system threads requires that we implement the blo
king I/O model in Java using

non-blo
king primitives.

The user-level thread implementation handles the Java I/O model in a less eÆ
ient

manner than kernel-level threads. It �rst tries the asyn
hronous version of the I/O request.

If this fails, it performs a thread swit
h. After some number of thread swit
hes, it uses the

sele
t 
all to 
he
k to see if there is any data ready. If so, it moves any threads that are

now ready into the queue of threads that the s
heduler will run. At this point, the thread

pa
kage must repeat the I/O system 
all.

Our implementation allo
ates a sta
k for ea
h thread, and performs thread swit
hes on

blo
king I/O 
alls and syn
hronization 
alls. Our user-level thread implementation maps

all of the Java threads to one kernel thread.

Some other examples of user-level thread pa
kages in
lude MIT Threads [10℄, PCR [8℄,

and NSPR [3℄.
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2.2 Thread Pooled Ar
hite
ture

Thread pooled servers attempt to avoid thread 
reation overheads and s
aling problems

asso
iated with hundreds of threads by simply not 
reating many threads. Instead, the

server maintains a pool of threads, and as 
onne
tions 
ome in, the server farms the 
on-

ne
tions out to a pool of worker threads. Many servers, in
luding Apa
he[1℄, use this sort

of ar
hite
ture.

Thread pooled servers are not without weaknesses. They 
an get worker threads tied up

by slow or hostile 
lients. In this 
ase, the thread pooled server either has to stop a

epting

new 
onne
tions or spawn new threads and pay the thread 
reation overhead. A greater


on
ern is that this approa
h does not generalize well to servers that require 
ontinuous


onne
tions su
h as 
hat servers or game servers.

We show an example of a thread pooled e
ho server in Figure 2-3. Note that the main

thread begins by 
reating a pool of worker threads. It then starts a

epting 
onne
tions,

and farming them out to the worker threads using a shared list. The worker threads remove

in
oming so
kets out of the shared list and servi
e them.

As previously mentioned, the thread pooled ar
hite
ture eliminates thread 
reation over-

head in most 
ases. Our implementation of the thread pooled servers use the same underly-

ing kernel-level threads pa
kage as the thread-per-
onne
tion ar
hite
ture. The rest of the

overheads in the thread pooled ar
hite
ture are very similar to the thread-per-
onne
tion

ar
hite
ture with a kernel-level threads implementation. The thread pooled ar
hite
ture

still pays largely the same syn
hronization and obje
t in
ation overheads and bene�ts from

eÆ
ient handling of the Java I/O model from the underlying kernel-level thread implemen-

tation.

2.3 Event-driven Ar
hite
ture

Event-driven ar
hite
tures break down the server pro
ess into a set of I/O events and


omputations that the server does in response to these events. For example, an event-

driven web server would re
eive an in
oming event in the form of a 
lient request and

then would exe
ute the 
ode to request a �le read. The server would then return to the

event-driven loop. At some point in the loop, the server would 
he
k and see that the read

�nished. On
e the �le read event �nished, the server would exe
ute 
ode to send the data
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read from the �le to the 
lient.

Event-driven ar
hite
tures poll for I/O events. Upon re
eiving an I/O event related to

one of the 
onne
tions, the servers run the appropriate event pro
essing 
ode that takes in

some state asso
iated with the 
onne
tion and the event. This ar
hite
ture avoids some

thread overheads asso
iated with general-purpose thread implementations.

We present an example of an event-driven e
ho server in Figures 2-4, 2-5, and 2-6. Figure

2-4 shows the 
ode that responds to a

ept events and initializes the 
onne
tions. The 
ode

in Figure 2-5 responds to the server initializing a 
onne
tion and 
he
ks for an in
oming

message. The 
ode in Figure 2-6 responds to an in
oming message and e
hos it ba
k to the


lient. We omit the event-driven s
heduler and I/O libraries for spa
e reasons.

The reader might noti
e that these event-driven servers store their lo
al variables in

heap allo
ated data stru
tures when blo
king 
alls o

ur. These heap allo
ations in
ur some

overhead for the original allo
ation and for in
reasing the garbage 
olle
tion frequen
y.

Servers su
h as Zeus[15℄ and Flash[9℄ use event-driven ar
hite
tures. The diÆ
ulty with

this ar
hite
ture is that event-driven servers are more diÆ
ult to write than their simpler

thread-per-
onne
tion 
ounterparts. The programmer has to expli
itly manage all of the


onne
tions and write 
ode in a 
ompli
ated event-driven manner. To address these issues,

we present a 
ompiler transformation from the simple thread-per-
onne
tion ar
hite
ture

to the event-driven ar
hite
ture.

We dis
uss this transformation in Chapter 3.

2.4 Qualitative Di�eren
es in Server Ar
hite
tures

We explore a thread-per-
onne
tion ar
hite
ture with both a kernel-level thread implemen-

tation and a user-level thread implementation, a thread pooled ar
hite
ture, and a sour
e

transformation into an equivalent single threaded event-driven program.

These di�erent server ar
hite
tures have performan
e and programmability impli
ations.

The di�erent versions in
ur di�erent overheads for syn
hronization, thread 
reation, I/O,

and pro
edure returns among other operations. Due to all of these di�erent fa
tors, it is

diÆ
ult to predi
t the e�e
t that the thread implementation has on a program's performan
e

from �rst prin
iples. Therefore, we 
hose to explore this spa
e empiri
ally with a set of server

ben
hmarks.
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2.4.1 Di�eren
es in Performan
e of the Server Ar
hite
tures

The event-driven ar
hite
ture has almost no syn
hronization 
ost, a very low thread 
reation

overhead, and no per thread sta
k overhead. Be
ause it uses heap allo
ated data stru
tures,

it in
urs greater allo
ation and pro
edure return overheads. However, with more eÆ
ient

garbage 
olle
tors than we 
onsidered, this overhead 
an be diminished[5℄. The event-driven

ar
hite
ture may also in
ur a greater system 
all overhead due to its use of asyn
hronous I/O

primitives. However, the e�e
t of the system 
all overheads 
an also be greatly diminished

by improving the operating system interfa
e[6℄.

The thread-per-
onne
tion ar
hite
ture with the user-level thread implementation is

very similar to the event-driven version with the ex
eption that it in
urs a per thread sta
k

overhead instead of any 
ontinuation overhead. It also in
urs a greater syn
hronization

overhead.

The thread-per-
onne
tion ar
hite
ture with the kernel-level thread implementation has

an extremely high overhead for thread 
reation and a more expensive syn
hronization over-

head. It in
urs a per thread sta
k overhead. However, it in
urs a smaller system 
all

overhead due to its use of blo
king I/O primitives.

The thread pooled ar
hite
ture does not 
reate many threads, so it does not have a high

thread 
reation overhead. With this ex
eption, it behaves very similarly to the thread-per-


onne
tion ar
hite
ture with kernel-level threads.

2.4.2 Di�eren
es in Programming the Server Ar
hite
tures

The thread-per-
onne
tion ar
hite
tures are the simplest to program. The developer 
an

fo
us on the very simple 
onne
tion oriented model. Ea
h thread of exe
ution only needs

to 
on
ern itself with one 
onne
tion.

The thread pooled ar
hite
ture is only slightly more 
ompli
ated. The worker threads

are very similar to their 
ounterparts in the thread-per-
onne
tion ar
hite
ture, but after

�nishing a 
onne
tion, the worker threads have to 
he
k for new 
onne
tions waiting for

servi
e.

The event-driven ar
hite
ture is perhaps the hardest to program. The programmer

has to expli
itly 
he
k for events, respond appropriately to events, and keep tra
k of data

stru
tures for all of the threads. Noti
e that in the event-driven example in Figures 2-4, 2-5,
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and 2-6, that most of the 
ode length 
omes from manipulating data stru
tures to expli
itly

store and reload the 
onne
tion's state. However, the transformation presented in the next


hapter largely removes this disadvantage.
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lass E
ho {

stati
 publi
 void main(String args[℄)

throws IOEx
eption {

int ps = 4;

ServerSo
ket s = new ServerSo
ket(1000);

LinkedList ll=new LinkedList();

for(int i=0;i<ps;i++) {

//Create pool of worker threads

Worker w=new Worker(ll);

w.start();

}

while (true) {

So
ket 
 = s.a

ept();

syn
hronized(ll) {

//Farm out the in
oming 
onne
tion

//to the pool of worker threads

ll.add(
);

ll.notify();

}

}

}

}


lass Worker extends Thread {

LinkedList ll;

Worker(LinkedList ll) {

this.ll=ll;

}

publi
 void run() {

So
ket 
lientSo
ket;

while(true) {


lientSo
ket=null;

syn
hronized(ll) {

do {

try {

//get an in
oming 
onne
tion


lientSo
ket=(java.net.So
ket)ll.removeFirst();

} 
at
h (Ex
eption e) {

try {

//sleep if the linked list

//is empty

ll.wait();

} 
at
h (Ex
eption ee) {

ee.printSta
kTra
e();

}

}

} while(
lientSo
ket==null);

}

try {

OutputStream out = 
lientSo
ket.getOutputStream();

InputStream in = 
lientSo
ket.getInputStream();

byte buffer[℄ = new byte[100℄;

while (true) {

int length = in.read(buffer, 0, buffer.length);

if (length == -1) break;

out.write(buffer, 0, length);

}


lientSo
ket.
lose();

} 
at
h (IOEx
eption e) {

System.err.println("IOEx
eption in Worker "+e);

}

}

}

}

Figure 2-3: Thread Pooled version of an E
ho Server
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lass E
ho {

stati
 publi
 VoidContinuation mainAsyn


(String args[℄) throws IOEx
eption {

ServerSo
ket s = new ServerSo
ket(1000);

while (true) {

Obje
tContinuation o
 = s.a

eptAsyn
();

if (o
.done==false) {

Environment e=new mainEnvironment(s);

mainContinuation m
=new mainContinuation(e);

o
.setNext(m
);

return m
;

} else {

So
ket 
=(So
ket)o
.value;

Worker w=new Worker(
);

w.startAsyn
();

}

}

}

}


lass mainEnvironment {

Obje
t o1;

publi
 mainEnvironment(Obje
t o1) {

this.o1=o1;

}

}


lass mainContinuation implements

Obje
tResultContinuation {

mainEnvironment env;

publi
 mainContinuation(mainEnvironment env) {

this.env=env;

}

publi
 void resume(Obje
t 
1) {

So
ket 
=(So
ket)
1;

ServerSo
ket s=(So
ket)env.o1;

Worker w = new Worker(
);

w.startAsyn
();

while(true) {

Obje
tContinuation o
 = s.a

eptAsyn
();

if (o
.done==false) {

env.o1=s;


.setNext(this);

} else {


=(So
ket)o
.value;

w=new Worker(
);

w.startAsyn
();

}

}

}

}

Figure 2-4: Event-Driven version of Conne
tion Thread
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lass Worker extends Thread {

So
ket 
lientSo
ket;

OutputStream out;

InputStream in;

Worker(So
ket s) {


lientSo
ket = s;

}

publi
 VoidContinuation runAsyn
() {

try {

out = 
lientSo
ket.getOutputStream();

in = 
lientSo
ket.getInputStream();

byte buffer[℄ = new byte[100℄;

while (true) {

IntContinuation i
 = doreadAsyn
(buffer);

if (i
.done==false) {

runEnvironment re=new runEnvironment(this,buffer);

runContinuation r
=new runContinuation(re);

i
.setNext(r
);

return r
;

} else {

int length=i
.value;

if (length == -1 )

break;

out.write(buffer,0,length);

}

}


lientSo
ket.
lose();

} 
at
h(IOEx
eption e) {

e.printSta
kTra
e();

}

return VoidDoneContinuation();

}

IntContinuation doreadAsyn
(byte[℄ buffer)

throws java.io.IOEx
eption {

IntContinuation i
=in.readAsyn
(buffer, 0, buffer.length);

if (i
.done==false) {

readEnvironment re=new readEnvironment();

readContinuation r
=new readContinuation(re);

i
.setNext(r
);

return r
;

} else {

return new IntDoneContinuation(i
.value);

}

}

}


lass runEnvironment {

Obje
t o1,o2;

publi
 runEnvironment(Obje
t o1, Obje
t o2) {

this.o1=o1;

this.o2=o2;

}

}

Figure 2-5: Event-Driven version of Worker Thread
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lass runContinuation implements

VoidContinuation,IntResultContinuation {

runEnvironment re;

publi
 runContinuation(runEnvironment re) {

this.re=re;

}

publi
 void resume(int length) {

Worker this1=(Worker)re.o1;

byte buffer[℄=(buffer[℄)re.o2;

try {

if (length== -1) {


lientSo
ket.
lose();

if (next==null)

return;

else

next.resume();

}

this1.out.write(buffer, 0, length);

while(true) {

IntContinuation i
 = doreadAsyn
(buffer);

if (i
.done==false) {

re.o1=this1;

re.o2=buffer;

i
.setNext(this);

return;

} else {

length=i
.value;

if (length==-1) break;

this1.out.write(buffer, 0, length);

}

}


lientSo
ket.
lose();

if (next==null)

return;

else

next.resume();

} 
at
h (IOEx
eption e) {

e.printSta
kTra
e();

if (next==null)

return;

else

next.resume();

}

}

}


lass readEnvironment {

}


lass readContinuation implements IntResultContinuation {

readEnvironment env;

IntResultContinuation next;

publi
 readContinuatiuon(readEnvironment env) {

this.env=env;

}

publi
 setNext(IntResultContinuation next) {

this.next=next;

}

publi
 void resume(int length) {

next.resume(length);

}

}

Figure 2-6: Event-Driven version of Worker Thread
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Chapter 3

Event-driven Transformation

3.1 Continuation Passing Style Conversion

The programming language 
ommunity originally developed Continuation Passing Style or

CPS Conversion to simplify 
ontrol-
ow to aid in the 
ompilation of fun
tional languages.

The basi
 idea is that every pro
edure 
all takes in an additional argument, a fun
tion that

expresses the remaining 
omputation. The CPS 
onversion algorithm results in 
onverted

programs where every pro
edure 
all is in the tail 
all position, whi
h is the last statement

exe
uted in a pro
edure, and where no pro
edure 
alls return.

In Figure 3-2, we show a simple Java example of CPS 
onversion. In Figure 3-1, we

show the original program, and in Figure 3-2, we show the CPS 
onverted program. We

use 
lasses to en
apsulate the 
ode and environments for 
ontinuations.

Every pro
edure 
all in the transformed version takes in a 
ontinuation in addition to

its previous arguments. Moreover, every path through every pro
edure makes exa
tly one


all, a tail 
all at the very end of the pro
edure. A more 
omplex Java program that used

lo
al variables would use environments to store the lo
al variables.


lass Original {

stati
 publi
 void main() {

System.out.println(foo());

System.exit();

}

int foo() {

return 2;

}

}

Figure 3-1: Original Sample Program

The relevant property of CPS 
onversion for our event-driven transformation is that the
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lass Converted {

stati
 publi
 void main() {

foo(new IntContinuation1());

}

void foo(IntContinuation a) {

a.
ontinuation(2);

}

}


lass IntContinuation1 implements IntContinuation {

publi
 
ontinuation(int i) {

System.out.println(i, new VoidContinuation1());

}

}


lass VoidContinuation1 implements VoidContinuation {

publi
 
ontinuation() {

System.exit();

}

}

Figure 3-2: Example of CPS Conversion for a Java Program

thread stores all of its remaining state in the 
ontinuation. We 
an use a modi�ed form of

CPS to return the 
ontinuation to a s
heduler instead of having pro
edures dire
tly invoke


ontinuations. This provides a me
hanism for suspending and resuming 
omputations.

CPS 
onversion for suspended 
alls makes pro
edure 
alls mu
h more expensive. Instead

of simply storing lo
al variables on a sta
k, CPS 
onverted programs allo
ate a heap obje
t,


opy the lo
al variables into the heap obje
t, and then 
opy the lo
al variables out of the

heap obje
t. To minimize this additional overhead, we use a sele
tive CPS 
onversion. We

dis
uss this 
onversion in more detail in the following se
tion.

3.2 Basi
 Transformation

To 
onvert programs from the multithreaded, blo
king I/O model into the event-driven I/O

model, we identify I/O operations that may potentially blo
k. At these points, we need the

ability to suspend the 
omputation of one thread and to resume it later when the I/O is

ready. To do this, we use a modi�ed CPS 
onversion.

The �rst modi�
ation is that the program passes 
ontinuations ba
k to a s
heduler.

The s
heduler exe
utes the 
ontinuation only when the I/O is ready. Instead of passing


ontinuations into methods, we have methods return a 
ontinuation that represents the

remaining 
omputation for the 
alled method. In this way, we enable optimizations that

avoid the overhead of generating unne
essary 
ontinuations and invoking the s
heduler.

The se
ond modi�
ation is a performan
e 
on
ern. The overhead of generating 
on-
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tinuations at every pro
edure 
ould be quite substantial. Sin
e the program requires the


apability to suspend and resume the 
omputation only when the program exe
utes blo
k-

ing I/O primitives, we only need to generate 
ontinuations for methods in 
all 
hains that

end in a potentially blo
king I/O primitive.

We identify blo
king I/O primitives by hand auditing the native 
alls in the Java 
lass

library to determine the set of native I/O methods that may blo
k. We refer to these

as dire
tly blo
king methods. We provide repla
ement asyn
hronous versions for dire
tly

blo
king methods that return 
ontinuations.

At 
ompile time, the 
ompiler identi�es all methods that may be part of a 
all 
hain that

ends with the program 
alling a dire
tly blo
king method. We do this by generating a 
all

graph and identifying all methods that 
an dire
tly or indire
tly 
all one of the identi�ed

blo
king I/O primitives. We refer to these methods as indire
tly blo
king methods. Our


ompiler transforms indire
tly blo
king methods into methods that return 
ontinuations.

For eÆ
ien
y reasons, it is important to have a pre
ise 
all graph. This minimizes

the unne
essary use of the more expensive 
ontinuation passing style 
alling 
onvention.

Our implementation uses a 
all graph algorithm similar to Ole Agesen's Cartesian produ
t

algorithm [4℄.

For an indire
tly blo
king method, the 
ompiler identi�es any 
all sites that may 
all

dire
tly or indire
tly blo
king methods. The 
ompiler repla
es ea
h of these 
all sites with

a 
all to the repla
ement version of the method, whi
h returns a 
ontinuation. After ea
h

one of these 
all sites, the 
ompiler generates a 
ontinuation obje
t for the 
urrent method.

The 
ontinuation in
ludes an environment for storing the values of live lo
al variables, a

normal resume method 
ontaining 
ode for the 
omputer to exe
ute upon the normal return

of the 
all site's 
allee, and a ex
eptional resume method 
ontaining 
ode for the 
omputer

to exe
ute if the 
all site's 
allee throws an ex
eption.

The 
allee method needs a pointer to the 
aller, so that upon 
ompletion it 
an run the


aller's 
ontinuation. In order to do this, the transformed 
ode returns the 
ontinuation it

built in the 
urrent method to the 
aller. After the 
aller builds its 
ontinuation obje
t, the


aller sets a link from the 
allee's 
ontinuation obje
t to the 
aller's 
ontinuation obje
t.

The transform also needs to handle the 
ase where a potentially blo
king method does

not blo
k. To do this, the transformed 
ode must wrap the return value in an identity


ontinuation for any return or throw statements rea
hable in a method without 
alling a
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possibly blo
king method.

The generated resume methods start by unpa
king the lo
al variables from the environ-

ment. The resume method must in
lude all the 
ode in the original method that is rea
hable

from the return of the original 
all site. For any potentially blo
king 
all site, the resume

method takes the returned 
ontinuation, links it to the previously stored next 
ontinuation,

and returns to the s
heduler. For return or throw instru
tions, the resume method simply


alls the resume method of the 
alling method with the appropriate value in its linked next


ontinuation.

For any non-blo
king method that may be 
alled at the same site as a blo
king method

due to virtual 
alls, the 
ompiler must generate a separate version with the same 
alling

semanti
s as the blo
king methods.

An event-driven s
heduler manages the 
ontinuations, polls sele
t for pending I/O, and

provides thread fun
tionality.

3.3 Optimizations to the Basi
 Transformation

The basi
 transformation provides the opportunity for many optimizations. The obvious

one is that when no blo
king I/O operation has o

urred or the I/O is immediately ready,

it is not ne
essary to in
ur the overhead of generating 
ontinuations and returning to the

s
heduler. We implement an optimization where I/O operations may optimisti
ally return

a value if possible. Continuation obje
ts 
ontain a 
ag indi
ating whether the 
aller 
an

immediately re
over the return value of the 
allee, or whether it must return to the s
heduler.

Another optimization used is that in loops with blo
king I/O, it is often the 
ase that

the same 
all site blo
ks in every iteration. In this 
ase, we 
an simply reuse the data

stru
tures from the previous iteration. By re
y
ling the 
ontinuations, we avoid the overhead

of requesting new memory and garbage 
olle
ting the old 
ontinuations.

Our transformation as implemented and the example below use both of these optimiza-

tions.

3.4 Example

For our example, we 
onsider the simple e
ho server shown in Figure 2-2. A 
all graph tells

us that the methods main, run, and doread 
an potentially dire
tly or indire
tly 
all the
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blo
king I/O primitives, read and a

ept. Therefore, the 
ompiler needs to transform all of

these methods.

In the method main, the analysis identi�es a potentially blo
king I/O primitive, a

ept.

At this point, the 
ompiler inserts 
ode that saves the state of the thread if the a

ept 
all


an not immediately return a so
ket.

The 
ompiler builds the 
lass mainEnvironment to store the live lo
al register values at

the a

ept 
all, and the 
lass mainContinuation to store the 
ode for the remaining 
ompu-

tation in the main method. The transformed resume method in the 
lass mainContinuation

�rst restores the live lo
al variables and then 
ontinues with the remaining 
omputation

for the method. The transformed method uses the re
y
ling optimization. If this method

blo
ks at the a

ept 
all, it simply reuses the old 
ontinuation obje
ts. We reprodu
e the

transformed 
ode for the E
ho 
lass in Figure 3-3 from Chapter 2 for the reader's 
onve-

nien
e.

If a blo
king method has a potentially non-blo
king exe
ution path, the method's type

still requires it to return an obje
t of a 
ontinuation type to the 
aller. The runAsyn


method shows an example of this using the \return VoidDoneContinuation()" statement to

generate an identity 
ontinuation.

We show the transformed 
ode for the worker 
lass in Figure 3-4 and 3-5.

3.5 Extensions

We optimized our implementation of the event-driven transformation and s
heduler for what

we believe to be 
ommon paradigms in server appli
ations. Our implementation assumes

that ea
h thread will exe
ute a �nite number of non-blo
king instru
tions between ea
h

blo
king I/O primitive and that no program holds a lo
k while 
alling a blo
king I/O

primitive. Our implementation only supports uni-pro
essors. We 
an trivially remove all of

these limitations, but in doing so, the transformed servers in
ur some additional overhead.

We des
ribe these extensions below.

We 
an develop further optimizations to redu
e the overheads in
urred in the event-

driven transformations. One su
h optimization is expli
itly managing the memory used for

the 
ontinuations. We dis
uss this optimization in detail later in this se
tion.

The event-driven transformation is useful for ar
hite
tures other than just using our
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asyn
hronous I/O library to generate a single-pro
ess event-driven server. We dis
uss these

other possibilities later in this se
tion.

Syn
hronization and other Threading Constru
ts Support for syn
hronization 
an

be added using a two step pro
ess. The �rst step is to determine whi
h syn
hronization

operations need to remain. For an ineÆ
ient implementation, we 
an skip this step and

leave all the syn
hronization operations in the program. Otherwise, this 
an be done using

a �xed point algorithm and the results from a pointer analysis algorithm. We also need to

add the wait methods to our list of primitive blo
king methods.

By syn
hronization, we mean simple mutual ex
lusion lo
ks. Java byte
ode en
odes the

operation to a
quire a lo
k as a monitorenter instru
tion and the operation to release a

lo
k as a monitorexit instru
tion. The Java language 
onstru
ts that 
an result in the gen-

eration of monitorenter and monitorexit instru
tions result in the generation of stru
tured

pairs. Unfortunately, arbitrary sequen
es of monitorenter and monitorexit instru
tions are

legal in byte
ode. For example, Java 
an only generate nested sequen
es of lo
ks like moni-

torenter A, monitorenter B, monitorexit B, monitorexit A. However, one 
an legally express

monitorenter A, monitorenter B, monitorexit A, monitorexit B in byte
ode.

Therefore, the analysis needs to be 
orre
t for arbitrary lo
king sequen
es, but pre
ise

only for the paired lo
king 
onstru
ts that the Java language generates.

The �rst stage of su
h an analysis would 
onsist of re
ognizing the paired monitorenter

and monitorexit 
onstru
ts that exists in the original Java language. To do this, the analysis

would begin with a data
ow analysis on ea
h 
allable method. The data
ow analysis would

determine at ea
h program point whi
h lo
ks the method obtained and in whi
h order. This

type of analysis is possible be
ause the monitorenter and monitorexit statements obtain the

obje
t from the same lo
al pointer. At merge statements, the analysis would 
he
k that

the in
oming points have a
quired the same lo
ks in the same order. If the in
oming

program points had not, the analysis would 
onservatively de
lare all of the lo
ks that

any of the in
oming program points to the merge had a
quired as ne
essary. If at any

monitorexit statement the pairing property does not hold, the analysis de
lares all the lo
ks

that the o�ending statement holds as ne
essary. When the analysis de
lares a monitorenter

statement as ne
essary, the analysis must also de
lare all other monitorenter statements

that may lo
k on the same obje
ts as ne
essary. We use the results of the pointer analysis
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to 
onservatively mark these other monitorenter sites as ne
essary.

The se
ond part of the analysis is a �xed point algorithm. The algorithm would begin

with a set of methods S that 
ontain lo
ks that the analysis de
lared ne
essary or that indi-

re
tly or dire
tly blo
king. The algorithm would 
y
le through all of the 
allable methods

in the program, looking for 
all sites that may 
all any method in S. When the analysis

�nds su
h a 
all site, the analysis de
lares all lo
ks that the �rst stage of the analysis indi-


ates as being held at this point as ne
essary. The analysis de
lares any monitorenter site

that may operate on the same obje
t as these lo
ks as ne
essary, and the analysis adds the

appropriate set of methods to S. The analysis 
ontinues 
y
ling through all of the 
allable

methods until the analysis rea
hes a �xed point.

Upon termination, the algorithm guarantees that any monitorenter/monitorexit pair

surrounding any possible thread swit
h point 
an generate a 
ontinuation at the moni-

torenter 
all. The algorithm terminates be
ause there are only a �nite number of syn
hro-

nization operations that the analysis may de
lare ne
essary.

The se
ond part of the pro
ess is to treat the monitorenter statements that we left in as

potentially blo
king for the event-driven transformation. We build optimisti
 
ontinuations

at these statements. Support for syn
hronization and methods su
h as notify/wait would

then be implemented in the event-driven s
heduler.

Fairness The 
urrent implementation makes no fairness guarantees. If some thread ex-

e
utes an in�nite loop that does not 
ontain a blo
king I/O operation, all other threads

will starve. We 
ould �x this by looking for ba
k edges in the graph representation of the

method. By simply treating ba
k edges as we would treat blo
king 
alls and returning to

the s
heduler, we 
an remove this limitation.

Multipro
essor Support We 
an support multipro
essors by allowing the s
heduler to

run multiple 
ontinuations at on
e. Be
ause of the additional 
on
urren
y allowed in this

system, all syn
hronization statements that the standard multithreaded version requires

must remain in the multipro
essor event-driven version.

Multipro
essor support requires that we modify the event-driven s
heduler to allow more

the s
hedule to exe
ute more than one 
ontinuation at on
e.
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Expli
it 
ontinuation/environment management One sour
e of overhead in our im-

plementation of the event-driven transformation is that the 
ontinuations are heap allo
ated.

At every single blo
king fun
tion 
all site, the transformed program generates a 
ontinuation

obje
t. These 
ontinuation obje
ts have lifetimes that mirror the original sta
k implemen-

tation. Therefore, the program 
ould allo
ate �xed areas of memory for ea
h of the original

threads to store the 
ontinuations.

Other I/O libraries The event-driven transformation 
an be easily adapted to use other

asyn
hronous I/O libraries. One 
ould also use event-driven I/O models su
h as the asym-

metri
 multi-pro
ess event-driven (AMPED) ar
hite
ture that the Flash webserver[9℄ uses.

The AMPED ar
hite
ture addresses the issue that in some 
ases for some versions of UNIX,

non-blo
king reads may a
tually blo
k on disk �les. The AMPED ar
hite
ture works around

this problem by using a pool of worker threads to handle �le reads. By simply dropping in a

repla
ement I/O library, our transformation 
an automati
ally generate the 
orresponding

event-driven servers from servers written in the thread-per-
onne
tion ar
hite
ture.

31




lass E
ho {

stati
 publi
 VoidContinuation mainAsyn


(String args[℄) throws IOEx
eption {

ServerSo
ket s = new ServerSo
ket(1000);

while (true) {

Obje
tContinuation o
 = s.a

eptAsyn
();

if (o
.done==false) {

Environment e=new mainEnvironment(s);

mainContinuation m
=new mainContinuation(e);

o
.setNext(m
);

return m
;

} else {

So
ket 
=(So
ket)o
.value;

Worker w=new Worker(
);

w.startAsyn
();

}

}

}

}


lass mainEnvironment {

Obje
t o1;

publi
 mainEnvironment(Obje
t o1) {

this.o1=o1;

}

}


lass mainContinuation implements

Obje
tResultContinuation {

mainEnvironment env;

publi
 mainContinuation(mainEnvironment env) {

this.env=env;

}

publi
 void resume(Obje
t 
1) {

So
ket 
=(So
ket)
1;

ServerSo
ket s=(So
ket)env.o1;

Worker w = new Worker(
);

w.startAsyn
();

while(true) {

Obje
tContinuation o
 = s.a

eptAsyn
();

if (o
.done==false) {

env.o1=s;


.setNext(this);

} else {


=(So
ket)o
.value;

w=new Worker(
);

w.startAsyn
();

}

}

}

}

Figure 3-3: Event-Driven version of Conne
tion Thread
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lass Worker extends Thread {

So
ket 
lientSo
ket;

OutputStream out;

InputStream in;

Worker(So
ket s) {


lientSo
ket = s;

}

publi
 VoidContinuation runAsyn
() {

try {

out = 
lientSo
ket.getOutputStream();

in = 
lientSo
ket.getInputStream();

byte buffer[℄ = new byte[100℄;

while (true) {

IntContinuation i
 = doreadAsyn
(buffer);

if (i
.done==false) {

runEnvironment re=new runEnvironment(this,buffer);

runContinuation r
=new runContinuation(re);

i
.setNext(r
);

return r
;

} else {

int length=i
.value;

if (length == -1 )

break;

out.write(buffer,0,length);

}

}


lientSo
ket.
lose();

} 
at
h(IOEx
eption e) {

e.printSta
kTra
e();

}

return VoidDoneContinuation();

}

IntContinuation doreadAsyn
(byte[℄ buffer)

throws java.io.IOEx
eption {

IntContinuation i
=in.readAsyn
(buffer, 0, buffer.length);

if (i
.done==false) {

readEnvironment re=new readEnvironment();

readContinuation r
=new readContinuation(re);

i
.setNext(r
);

return r
;

} else {

return new IntDoneContinuation(i
.value);

}

}

}


lass runEnvironment {

Obje
t o1,o2;

publi
 runEnvironment(Obje
t o1, Obje
t o2) {

this.o1=o1;

this.o2=o2;

}

}

Figure 3-4: Event-Driven version of Worker Thread
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lass runContinuation implements

VoidContinuation,IntResultContinuation {

runEnvironment re;

publi
 runContinuation(runEnvironment re) {

this.re=re;

}

publi
 void resume(int length) {

Worker this1=(Worker)re.o1;

byte buffer[℄=(buffer[℄)re.o2;

try {

if (length== -1) {


lientSo
ket.
lose();

if (next==null)

return;

else

next.resume();

}

this1.out.write(buffer, 0, length);

while(true) {

IntContinuation i
 = doreadAsyn
(buffer);

if (i
.done==false) {

re.o1=this1;

re.o2=buffer;

i
.setNext(this);

return;

} else {

length=i
.value;

if (length==-1) break;

this1.out.write(buffer, 0, length);

}

}


lientSo
ket.
lose();

if (next==null)

return;

else

next.resume();

} 
at
h (IOEx
eption e) {

e.printSta
kTra
e();

if (next==null)

return;

else

next.resume();

}

}

}


lass readEnvironment {

}


lass readContinuation implements IntResultContinuation {

readEnvironment env;

IntResultContinuation next;

publi
 readContinuatiuon(readEnvironment env) {

this.env=env;

}

publi
 setNext(IntResultContinuation next) {

this.next=next;

}

publi
 void resume(int length) {

next.resume(length);

}

}

Figure 3-5: Event-Driven version of Worker Thread
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Chapter 4

Empiri
al Evaluation

In this se
tion, we quantify the performan
e di�eren
es of the various server ar
hite
tures

a
ross a variety of server appli
ations. Note that we 
ontinue to use the term ar
hite
ture

to refer to software design and not to refer to the various hardware platforms introdu
ed

in this 
hapter. The fa
tors in the performan
e di�eren
es between the various server ar-


hite
tures 
an be quite 
ompli
ated, and they 
an in
lude fa
tors su
h as how the server

handles 
on
urren
y, the 
a
hing system, overheads of building 
ontinuations, and di�er-

en
es in GC performan
e among many other things. We examine the performan
e of these

servers in a mu
h simpler model. We believe that for many appli
ations, the most sig-

ni�
ant di�eren
es between the server ar
hite
tures are the thread 
reation overhead, the

syn
hronization overhead, and the obje
t in
ation overhead.

4.1 Performan
e Model

We use a simpli�ed model for exe
ution time of the servers for a given workload as follows:

t

total

= t

ar
hite
ture independent

+ t

ar
hite
ture dependent

t

ar
hite
ture dependent

= t

thread 
reation

+ t

obje
t inflation

+ t

syn
hronization

This model separates the ar
hite
ture independent 
ost t

ar
hite
ture independent

from the

implementation dependent 
ost. The ar
hite
ture independent time 
onsists of the time the

program spends exe
uting or waiting on operations that we do not model as being di�erent

between the ar
hite
tures.

There are other ar
hite
ture dependent fa
tors that we omit in this des
ription of server
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performan
e. These omitted fa
tors are typi
ally small relative to the modelled ones. This

is not true for all possible server behaviors, and an example of this shows up in the serial

e
ho ben
hmark and we dis
uss this example in later se
tions.

The thread 
reation overhead is how mu
h time the pro
essor uses per thread 
reation

operation. Some implementations of threads have rather 
ostly thread 
reation operations.

The syn
hronization overhead is how mu
h time the server uses per syn
hronization opera-

tion on an obje
t. The obje
t in
ation is how mu
h time the server uses per obje
t in
ation

operation. Obje
t in
ation o

urs be
ause the runtime does not allo
ate memory by default

for some stru
tures, instead the runtime allo
ates memory on demand for the �rst operation

requiring one of these stru
tures. One su
h operation is obje
t syn
hronization. We dis
uss

the 
auses of these overheads in more depth in the next se
tion.

We begin by measuring thread 
reation, syn
hronization, and obje
t in
ation overheads

with mi
roben
hmarks. We use these measured overheads with runtime instrumentation


ounts to gain insight into the performan
e of the various server ar
hite
tures.

4.2 Dis
ussion of Overheads

In this se
tion, we dis
uss the thread 
reation, syn
hronization, and obje
t in
ation over-

heads in more detail.

4.2.1 Thread Creation

When a program 
reates a thread, the runtime must do some amount of work to set up the

appropriate bookkeeping stru
tures and resour
es. For example, in order to 
reate a new

thread in Linux's kernel-level threads implementation, the thread pa
kage reserves virtual

memory for the sta
k, adds a pro
ess entry to the kernel tables, and sets up stru
tures

inside the thread library. For user-level threads, the runtime must allo
ate a sta
k, the

runtime must allo
ate and initialize thread spe
i�
 data stru
tures, and the runtime must

add the thread to the ready queue. These a
tions take some amount of time that depends

on the thread implementation. We quantify this overhead as the thread 
reation overhead.
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4.2.2 Obje
t In
ation and Syn
hronization

Syn
hronization and obje
t in
ation overheads are 
losely related. The Java language

provides lo
king primitives that allow threads to lo
k, suspend, or wake suspended threads.

Moreover, Java asso
iates a full-featured lo
k stru
ture with every obje
t 
reated in the

program.

To implement lo
ks, thread pa
kages need some amount of memory for keeping tra
k of

the lo
k state. To avoid having to allo
ate this amount of memory for every obje
t 
reated

by a Java program, many Java implementations do not allo
ate the memory required for

the lo
king data stru
ture for a given obje
t until a lo
king operation a
tually o

urs on

that obje
t. At this point, an operation known as obje
t in
ation o

urs.

In Java, ea
h obje
t has a hash
ode asso
iated with it. In our 
ompiler, for in
ated

obje
ts we reuse this spa
e as a pointer to an in
ated obje
t data stru
ture, and move

the hash
ode to the in
ated obje
t data stru
ture. In the 
ase of our 
ompiler, the pro-

gram allo
ates memory for the lo
k data stru
ture for the given obje
t, moves the obje
t's

hash
ode to the newly allo
ated memory, 
ips an unused bit in the hash
ode to 
ag the


hange, and uses the remaining bits of the hash 
ode to point to the newly allo
ated mem-

ory. E�e
tively, the pro
ess of in
ating obje
ts gives an additional overhead to the �rst

syn
hronization operation to o

ur on an obje
t. This overhead is the obje
t in
ation

overhead.

To guarantee ex
lusive a

ess to a lo
k, the program must exe
ute some algorithm

ea
h time it 
alls a lo
king primitive. The time this algorithm takes to exe
ute is the

syn
hronization overhead.

4.3 Experimental Setup

Our experimental setup 
onsists of a 
lient simulator running on a 866 Mhz Pentium III

pro
essor with 512 MB of memory, and a server running on a Netwinder with a 275 Mhz

StrongARM pro
essor with 128 MB of memory. We 
onne
ted the two 
omputers via 100

megabit Ethernet through a LinkSYS 5 port 10/100 baseT Ethernet swit
h. We isolated

the test network to prevent outside traÆ
 from in
uen
ing the results.

We 
hose this ben
hmark platform to insure that the server's performan
e was the

bottlene
k. We 
hose a relatively fast 
lient ma
hine and network to ensure that the server
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is always busy. We wrote the 
lients in either C or Java. We 
ompiled the Java 
lients

for the Pentium III using our 
ompiler's C ba
kend with the event-driven transformation

enabled.

4.4 Measuring Overheads

In this se
tion, we dis
uss how we measure the thread 
reation, syn
hronization, and obje
t

in
ation overheads with mi
roben
hmarks. Knowledge of these overheads along with 
ounts

of the given operation allows us to 
al
ulate the ar
hite
ture dependent times dis
ussed in

the previous se
tion.

Our thread 
reation mi
roben
hmark simply exe
utes 10,000 thread 
reations, runs,

and joins for threads that exe
ute the empty method under ea
h ar
hite
ture. For ea
h

ar
hite
ture, we present the average 
ost of this in Table 4.1. This ben
hmark is not

appli
able to the thread pooled server sin
e thread pooled servers do not 
reate threads

ex
ept for a stati
 pool at the beginning of exe
ution.

Our syn
hronization mi
roben
hmark 
aptures the syn
hronization 
ost and the obje
t

in
ation 
ost. The mi
roben
hmark does this by syn
hronizing on the same obje
t many

times in a loop. This gives us the time taken for a syn
hronization operation.

A separate loop syn
hronizes on newly 
reated obje
ts many times in a loop. This gives

us the time taken for a syn
hronization operation, an obje
t in
ation operation, and an

obje
t allo
ation. To separate the obje
t in
ation 
ost, we measure the allo
ation 
ost in a

separate loop that simply allo
ates new obje
ts. With all of the 
osts known, we 
an simply

subtra
t to 
al
ulate the 
ost of obje
t in
ation.

We present the results of the obje
t syn
hronization and in
ation ben
hmarks in Table

4.1. Note that the syn
hronization 
ost shown for the event-driven version of the server

is simply the 
ost of a native 
all to an empty routine. These 
alls remain, be
ause the

transformation does not attempt to remove them. The event-driven version performs no

a
tual syn
hronization.

4.5 Ben
hmarks

Our set of ben
hmarks in
ludes: Chat, Quote, HTTP, E
ho, Game, Phone, and Time. We

intend these ben
hmarks to simulate many real world server appli
ations.
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Server Ar
hite
ture Event-Driven Thread Pooled Thread-Per-Conne
tion Thread-Per-Conne
tion

w/ Native Threads w/ User Spa
e Threads

Thread Creation 0.21 N/A 2.21 0.65

Cost (ms)

Obje
t In
ation N/A 0.04333 0.04333 0.03212

Cost (ms)

Syn
hronization 0.0014 0.0044 0.0044 0.0025

Cost (ms)

Table 4.1: Mi
roben
hmark Results for Server Ar
hite
tures

Chat Server The 
hat server is a simple multiperson 
hat room server. A user 
onne
ts

to it, and the server rebroad
asts any messages inputted to all other users. Our 
lient

simulation opens a set of 
onne
tions to the server, ea
h 
onne
tion sends a number of

messages, and then waits for the server to deliver all the messages. The 
hat server is a

modi�ed version of a 
hat server written by Lou S
hiano and it is available on the web at

http://www.geo
ities.
om/Sili
onValley/Bay/6879/
hat.html.

Quote Server The quote server is a simple sto
k quote server. A 
lient 
onne
ts to the

server and requests the pri
es of various sto
ks. Our 
lient simulation starts o� a number

of threads, ea
h thread repeatedly requests a sto
k pri
e and waits for a response from

the server before going to the next request. The quote server is a modi�ed version of

Sto
kQuoteServer written by David W. Baker, and it is available in Que's Spe
ial Edition

Using Java, 2nd Edition.

HTTP Server The HTTP server is a simple web server. Our 
lient simulation attempts

to simultaneously request web pages from the servers. The HTTP server is a modi�ed

version of JhttpServer written by Duane M. Gran.

E
ho Server The e
ho server simply e
hoes any input ba
k to the 
lient. We have four

di�erent 
lients for this server. The serial e
ho ben
hmark opens a set of 
onne
tions, does

a request and a response on ea
h 
onne
tion in order, and then 
y
les through the request

and response sequen
e for a number of times. In this ben
hmark, only one 
onne
tion at a

time ever has data sent a
ross it.

The limited parallelism e
ho ben
hmark opens a set of 
onne
tions, sends a request

down ea
h 
onne
tion, reads the response and sends another request for ea
h 
onne
tion

in order, and �nally repeats the last step for a number of times. In this ben
hmark, many


onne
tions 
an be a
tive at on
e.
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The long 
onne
tion e
ho ben
hmark opens a set of 
onne
tions, sends a message down

all of the 
onne
tions, and then waits for responses. When any response 
omes in, the


lient simulator immediately sends another request until it has sent the desired number

of messages a
ross ea
h 
onne
tion. In this ben
hmark, the 
lient simulator keeps many


onne
tions a
tive at on
e.

The short 
onne
tion e
ho ben
hmark opens a pool of 
onne
tions and sends messages

down them. Whenever the 
lient simulator re
eives a response, it 
loses the 
orresponding


onne
tion, opens a new one, and repeats until the 
lient simulator has sent the desired

number of requests and re
eived the desired number of responses. In this ben
hmark, the


lient simulator keeps many 
onne
tions a
tive at on
e.

Game Server We designed the game server to simulate a server that pairs online game


lients. The 
lient simulator simply opens pairs of 
onne
tions and pings messages ba
k

and forth over these 
onne
tions.

Phone Server The phone server provides phone look up and phone entry servi
es to in-


oming 
onne
tions. The 
lient simulator simply 
onne
ts to the server, and ea
h 
onne
tion

adds one entry to the database.

Time Server The time server simply tells any in
oming 
onne
tions the 
urrent time.

Our simulation attempts to keep open a 
ertain number of 
onne
tions querying the server

for the time.

4.6 Ben
hmark Methodology

We exe
uted the ben
hmarks on an isolated network of two ma
hines. Ea
h ma
hine only

ran the ben
hmark pro
esses and ne
essary system pro
esses. We hard
oded the mapping

of hostnames to IP addresses using the /et
/hosts name resolution me
hanism in Linux.

We repeated ea
h ben
hmark 30 times and averaged the results.

The 
ompiler instrumented the binaries to 
ount syn
hronization and in
ation opera-

tions. We 
al
ulated the number of thread 
reations from the 
lients' 
onne
tion pattern.

The 
lients attempted to maintain a load of 50 a
tive 
lient 
onne
tions on the server. In

some 
ases, su
h as the short 
onne
tion e
ho ben
hmark, although the 
lient may attempt
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to 
reate a load of 50 
lients, the server does not a
tually see 50 simultaneous a
tive threads.

This is be
ause the 50 a
tive 
onne
tions the 
lient sees in
ludes 
onne
tions the server has

already served but are waiting in operating system bu�ers and 
onne
tions that the server

hasn't a

epted yet but are waiting in operating system bu�ers.

We 
on�gured the thread pooled servers to use pools of 4 worker threads for the short

e
ho, the time, the http, and the phone ben
hmarks. The rest of the ben
hmarks required

more than 4 
onne
tions open at on
e, so we set the pool size to the number of simulated


lients. We empiri
ally determined the number 4 to yield good results for our setup.

4.7 Ben
hmark Results

In this se
tion, we present and dis
uss the ben
hmark results. We evaluate the perfor-

man
e model in qualitative terms, with a quantitative evaluation of the performan
e model

appearing in a later se
tion.

E
ho and Time Servers In Figure 4-1, we present the ben
hmark results for the e
ho

server using the limited parallelism e
ho ben
hmark, the long 
onne
tion e
ho ben
hmark,

and the short 
onne
tion e
ho ben
hmark; and the time server. These servers are the

simplest in our ben
hmark suite. Modeling the performan
e of these ben
hmarks in terms

of an ar
hite
ture independent exe
ution time plus a thread 
reation overhead, an obje
t

in
ation overhead, and a syn
hronization overhead works extremely well.

For 
omparison to the results in Figure 4-1, we ben
hmarked an event-driven C version

of the server. The C version takes 1.60 se
onds for parallel e
ho ben
hmark, 1.64 se
onds

for the long 
onne
tion e
ho ben
hmark, and 3.25 se
onds for the short 
onne
tion e
ho

ben
hmark. The C e
ho server takes roughly a third less time for the ben
hmarks. This

extra time the Java server takes 
an likely be attributed to additional safety 
he
ks su
h as

array bounds 
he
ks that are present in the Java version, a more generalized event-driven

support system, native 
all overheads, and optimization di�eren
es between our resear
h

Java 
ompiler and a produ
tion C 
ompiler. The Java version of the e
ho server does not

make extensive use of the 
lass library fun
tionality, so this should not play mu
h of a role.

The parallel e
ho and long e
ho ben
hmarks perform about the same for all the ar
hite
-

tures. This is be
ause they do not 
reate threads during the exe
ution and exe
ute minimal

syn
hronization operations.
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Server ar
hite
tures with low thread 
reation overheads like the event-driven or thread-

pooled ar
hite
tures do extremely well on the short e
ho and time ben
hmarks. This is due

to the large number of threads 
reated by these ben
hmarks. Note that the ar
hite
ture

independent time is similar for all of the ben
hmarks, indi
ating that the performan
e model

works well for these ben
hmarks.

In Figure 4-2, we present the ben
hmark results for the game, web, 
hat, phone and

quote servers. Our simple performan
e model works well on most of these servers, but it

does break down somewhat on the quote and game server.

Chat Server The 
hat server 
reates very few threads during its exe
ution. A more

important fa
tor in the performan
e of the 
hat server is the syn
hronization overhead.

The performan
e model appears to work reasonably well for the 
hat server with some

imperfe
tion for the user-level threads.

Quote Server The quote server ben
hmark 
reates very few threads during its exe
ution

be
ause the 
lient simulator only opens 50 
onne
tions at the very beginning. Be
ause of this


onne
tion pattern, the thread 
reation overhead is not very important in this ben
hmark.

The event-driven and user-level thread ar
hite
tures do better on this ben
hmark than the

performan
e model predi
ts.

HTTP Server For 
omparison to the http server results in Figure 4-2, Apa
he takes

4.30 se
onds to 
omplete the same task. The large performan
e di�eren
e between Apa
he

and our web servers 
an likely be attributed to extensive use of ineÆ
ient 
lass library

fun
tionality, additional safety 
he
ks su
h as array bounds 
he
ks that are present in the

Java version, native 
all overhead, and optimization di�eren
es between our resear
h Java


ompiler and a produ
tion C 
ompiler. The http server ben
hmark bene�ts from ar
hite
-

tures with low thread 
reation overheads and from low obje
t in
ation overheads. Note

that the ar
hite
ture independent time is similar for all of the ar
hite
tures, indi
ating that

the performan
e model works well for this ben
hmark.

Game Server The game server ben
hmark 
reates very few threads during its exe
ution,

so thread 
reation overhead is not very important. The event-driven and user-level thread

ar
hite
tures do better on this ben
hmark than the performan
e model predi
ts.
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Phone Server The phone server ben
hmark bene�ts from low thread 
reation overheads

and from low obje
t in
ation overheads. Note that the ar
hite
ture independent time for the

phone server ben
hmark is similar for all of ar
hite
tures, indi
ating that the performan
e

model works well for this ben
hmark.

Serial E
ho Ben
hmark In Figure 4-3, we present a ben
hmark for whi
h the model

breaks down. For 
omparison to these results, the C version of the e
ho server takes 3.16

se
onds to exe
ute the serial e
ho ben
hmark. Note that this is slower than the thread-per-


onne
tion ben
hmark with the kernel-level threads implementation. This is be
ause the

event-driven C server su�ers from the same problem as the event-driven Java version and

the user-level threads version.

This ben
hmark demonstrates a problemati
 behavior region for the event-driven and

user-level thread implementations. After every in
oming 
onne
tion, these servers must


all sele
t, be
ause there are no other 
ontinuations or threads ready for exe
ution. Sin
e

the 
lient only intera
ts with one 
onne
tion at a time, the server 
an never amortize the

overhead of 
alling sele
t and pro
essing the returned results over multiple threads. This

ben
hmark 
alls sele
t 5,000 times, whereas the parallel version only 
alls sele
t 100 times.

But both of these ben
hmarks send the same total volume of traÆ
 over the same number

of 
onne
tions. Eliminating the sele
t overhead is a topi
 of a
tive resear
h and we dis
uss

it later in this 
hapter.

4.8 The Serial E
ho Ben
hmark

To explain the results of the serial e
ho ben
hmark, it is ne
essary to extend our previous

performan
e model. We do this by adding a term to represent the time it takes to pro
ess

the sele
t 
all to get:

t

ar
hite
ture dependent

= t

thread 
reation

+ t

obje
t inflation

+ t

syn
hronization

+ t

sele
t pro
essing

We measured the sele
t pro
essing overhead for the event-driven and the user threads

pa
kages with a mi
roben
hmark. The mi
roben
hmark 
alled the sele
t pro
essing 
ode

with 49 threads blo
ked waiting to read serial I/O and 1 thread waiting to read \/dev/zero"

I/O that was ready. We give the overheads in Table 4.2. This gives a total sele
t pro
essing

time of 4.46 se
onds for the event-driven server and 1.13 se
onds for the user-level threads

server. Note that we 
annot simply time the sele
t pro
essing 
ode for the server ben
hmark,
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Figure 4-1: E
ho and Time Servers

be
ause the network laten
y appears in the amount of time sele
t blo
ks for. If we simply

timed the sele
t pro
essing 
ode, we would e�e
tively 
ount the network laten
y in the

sele
t pro
essing overhead. Sin
e the network laten
y is a server ar
hite
ture independent

time and the kernel-level threads do not have a sele
t 
all to measure, this is not the 
orre
t

approa
h.

Server Ar
hite
ture Event-Driven User Spa
e Threads

Sele
t Pro
essing 0.891 0.225

Cost (ms)

Table 4.2: Mi
roben
hmark Results for Sele
t Evaluation

We present these results in graphi
al form in Figure 4-4.
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Figure 4-2: Game, Web, Chat, Phone and Quote Servers

4.9 Quantitative Evaluation of the Performan
e Model

The performan
e model attempts to split the exe
ution time of the servers into an ar
hi-

te
ture dependent portion and an ar
hite
ture independent portion. For a given server, the

ar
hite
ture independent time should remain 
onstant a
ross all ar
hite
tures. A mean-

ingful evaluation of the performan
e model should numeri
ally express how invariant the

ar
hite
ture independent time is a
ross the various ar
hite
tures.

The standard deviation of the ar
hite
ture independent times gives a measure of how


lose the ar
hite
ture independent times are. However, this number is tied to the a
tual

exe
ution time of the ben
hmark. To remove this dependen
e, we 
an divide the standard

deviation by the average ar
hite
ture independent time for the given ben
hmark. This

number is 
alled the 
oeÆ
ient of variation in statisti
s.

To help understand whi
h 
omponents of the performan
e model are important for the

ben
hmarks we ran, we present results for �ve di�erent models ranging from no model to
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Figure 4-3: Serial E
ho Ben
hmark

the sele
t 
ompensated model used for the serial e
ho ben
hmark.

The no model performan
e numbers are for a model with an ar
hite
ture dependent

overhead des
ribed by the equation t

ar
hite
ture dependent

= 0. This model assumes that all

the ar
hite
tures are essentially the same.

The thread 
reation model performan
e numbers are for a model des
ribed by the equa-

tion t

ar
hite
ture dependent

= t

thread 
reation

. This model assumes that the only signi�
ant

di�eren
e between the ar
hite
tures is in the thread 
reation time.

The obje
t in
ation model performan
e numbers are for a model des
ribed by equation

t

ar
hite
ture dependent

= t

thread 
reation

+ t

obje
t inflation

. This model assumes that thread


reation and obje
t in
ation are the only signi�
ant di�eren
es in the ar
hite
tures.

The 
omplete model performan
e numbers are for a model des
ribed by the equation

t

ar
hite
ture dependent

= t

thread 
reation

+ t

obje
t inflation

+ t

syn
hronization

. This model assumes

that thread 
reations, obje
t in
ations, and syn
hronizations are the only signi�
ant di�er-
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Figure 4-4: Serial E
ho Ben
hmark with Sele
t Overheads

en
es between the di�erent ar
hite
tures.

The 
omplete model with sele
t performan
e numbers are for a model des
ribed by

t

ar
hite
ture dependent

= t

thread 
reation

+t

obje
t inflation

+t

syn
hronization

+t

sele
t pro
essing

. This

model adds the overhead of sele
t pro
essing into the 
omplete model performan
e numbers.

We only use this model for the serial e
ho ben
hmark.

We present the 
oeÆ
ients of variation in Table 4.3. The reader may note that in
reas-

ing the sophisti
ation of the model does not always yield better results. This is be
ause

some overheads are not signi�
ant for some ben
hmarks. For example, the long 
onne
tion

e
ho ben
hmark opens its 
onne
tions before the ben
hmark starts and does very little

syn
hronization. Adding more details to the model when they are not signi�
ant for the

ben
hmark is unlikely to yield better results. Some of the results shown in Table 4.3 re
e
t

this.

The model works very well for the short e
ho ben
hmark, the time ben
hmark, the 
hat
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Server No Model Thread Creation Obje
t In
ation Complete Complete

Model Model Model Model w/ sele
t

Limited Parallelism E
ho 0.026 N/A 0.029 0.030 N/A

Long E
ho 0.050 N/A 0.052 0.052 N/A

Short E
ho 0.370 0.065 0.035 0.028 N/A

Time 0.380 0.091 0.062 0.057 N/A

Chat 0.034 0.033 0.032 0.034 N/A

Quote 0.158 0.157 0.152 0.144 N/A

HTTP 0.107 0.052 0.038 0.032 N/A

Game 0.177 0.176 0.172 0.170 N/A

Phone 0.199 0.095 0.072 0.067 N/A

Serial 0.571 N/A 0.573 0.574 0.268

Table 4.3: Performan
e Model Evaluation

ben
hmark, the http ben
hmark, and the phone ben
hmark. It works reasonably well for

the game and the quote ben
hmark. Even after 
orre
tions for sele
t pro
essing, the model

still works poorly for the serial e
ho ben
hmark.

The 
omplete model predi
ts that the limited parallelism e
ho ben
hmark and the long

e
ho ben
hmark have little dependen
e on server ar
hite
ture, and the nearly identi
al

exe
ution times a
ross the various server ar
hite
tures 
on�rms this.

4.10 Dis
ussion of Results

From our ben
hmark results, it is 
lear that no single ar
hite
ture is always better than the

others. However, for various 
lasses of appli
ations, some ar
hite
tures have advantages.

For appli
ations that establish short 
onne
tions su
h as web servers or other request and

response based information servers, ar
hite
tures with very small thread 
reation overheads

are optimal. Event-driven and thread pooled servers appear to be the best 
hoi
e due to

their low or non-existent thread 
reation 
ost.

For appli
ations with persistent 
onne
tions that require little syn
hronization su
h as

our long 
onne
tion e
ho ben
hmarks, it appears that no server ar
hite
ture has a 
lear

advantage.

For appli
ations with persistent 
onne
tions with lots of syn
hronization, su
h as a 
hat

server, ar
hite
tures with low syn
hronization overheads are optimal. The event-driven or

user-level thread implementation works best for this 
lass of appli
ations.

Appli
ations with very few a
tive 
onne
tions do not perform well with ar
hite
tures

that use sele
t polling. They end up running some very small portion of appli
ation 
ode,

they run out of 
omputation to do, and then run some relatively expensive sele
t pro
essing

routines. For this reason, native thread implementations are the best 
hoi
e in this 
lass of
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appli
ations.

The other important lesson to keep in mind is that the relative importan
e of various

overheads depends on 
lient behavior. It is likely that thread 
reation overheads would

be
ome mu
h more important in the 
hat, quote, and game server if the 
lients made short

lived 
onne
tions to the servers. And it is reasonable to think that these di�erent 
onne
tion

patterns 
ould o

ur when people deploy the servers.

We 
an fault the UNIX operating system for part of the poor performan
e of the event-

driven servers in 
ases like the serial e
ho ben
hmark. The next se
tion dis
usses problems

with operating system support for event-driven servers.

4.11 Operating System Support for Event-driven Servers

UNIX falls short in providing eÆ
ient support for event-driven servers. One problem is

that non-blo
king I/O 
alls may a
tually blo
k for �le reads. The AMPED[9℄ ar
hite
ture

attempts to work around this 
aw.

Another 
aw is that the only reasonably s
aleable way for event-driven servers to 
he
k

for events in UNIX is polling sele
t. The time sele
t takes to run is proportional to the

number of �le des
riptors s
anned, and not the number of ready �le des
riptors returned.

Some work has been done in providing s
aleable implementations of sele
t[7℄. However, the

interfa
e that sele
t uses inherently s
ales poorly[6℄. Banga, Mogul, and Drus
hel redu
e

sele
t/event delivery overhead for a proxy web server from 33.51% of the exe
ution time to

less than 1% by swit
hing to an expli
it event delivery me
hanism. Using an expli
it event

delivery me
hanisms like the one developed by Banga, Mogul, and Drus
hel would likely

result in greatly improved performan
e for the event-driven servers.
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Chapter 5

Con
lusion

This proje
t 
onsiders an event-driven server ar
hite
ture, a thread-per-
onne
tion ar
hite
-

ture with kernel-level threads, a thread-per-
onne
tion ar
hite
ture with user-level threads,

and a thread-pooled server ar
hite
ture. We presented an empiri
al model for the perfor-

man
e of these ar
hite
tures derived from thread 
reation, syn
hronization, obje
t in
ation,

and sele
t pro
essing overheads.

We presented a novel thread-per-
onne
tion to event-driven transformation utilizing a

modi�ed partial 
ontinuation passing style 
onversion in this report and empiri
ally evalu-

ated it. We 
ompared this server ar
hite
ture to a more traditional thread-per-
onne
tion

server ar
hite
ture and a thread-pooled server ar
hite
ture.

The event-driven ar
hite
ture very eÆ
iently handles thread 
reation and enables the

elimination of syn
hronization and the 
orresponding obje
t in
ation in many 
ases. How-

ever, the event-driven transformation introdu
es a large sele
t pro
essing overhead. I/O

patterns that do not allow the server to amortize this 
ost over many 
onne
tions result in

very poor performan
e from the event-driven ar
hite
ture. The transformation results in

performan
e in
reases up to a fa
tor of 2 and performan
es de
reases up to a fa
tor of 3.

The fa
tor of 3 slowdown is partly due to poor operating system support for event-driven

servers. Others do resear
h on more eÆ
ient I/O primitives for event-driven servers. An

event-driven server using an improved operating system interfa
e would probably not see

this severe slowdown.

The performan
e model 
onsidered in this report is a simplisti
 model, only a

ounting

for the di�ering 
osts of various a
tions under the di�erent ar
hite
tures. It does not a

ount
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for se
ond order e�e
ts su
h as di�eren
es due to memory management. But it explains the

ben
hmarks results quite well.

Further resear
h remains in expli
itly handling 
ontinuation memory management, ex-

amining di�erent event-driven ar
hite
tures, doing a more 
omplete performan
e model,

examining di�erent operating system interfa
es, and using SMP 
ontinuation s
hedulers.
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