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Abstrat

Over the past few years, mainstream omputing has shifted from isolated personal omput-

ers to networks of omputational devies. As a result the lient-server programming model

has beome inreasingly important. These servers often have very strong performane and

reliability riteria.

We did an empirial study of di�erent server arhitetures, developed a novel thread-per-

onnetion to event-driven transformation, and developed a performane model to predit

server performane under various server arhitetures.

We onsidered four di�erent server arhitetures: a thread-per-onnetion arhiteture

built on a kernel-level thread implementation, a thread-per-onnetion arhiteture built on

a user-level thread implementation, an automatially generated event-driven arhiteture,

and a thread pooled arhiteture.

Our empirial study onsisted of evaluating the di�erent server arhitetures aross a

suite of benhmarks onsisting of an eho server with di�erent traÆ patterns, a time server,

a http server, a stok quote server, a game server, and a hat server.

We modeled the exeution time of the servers as having an arhiteture independent

omponent and an arhiteture dependent omponent. The arhiteture dependent ompo-

nent inludes implementation dependent overheads suh as thread reation, objet ination,

synhronization, and selet proessing.

The performane model works well for all the servers we benhmarked. The event-driven

transformation resulted in speedups of up to a fator of 2 and slowdowns of up to a fator of

3 relative to the thread-per-onnetion arhiteture using the kernel-level threads pakage.

From the empirial study, one �nds that no single server arhiteture works best for all

servers. In fat, the optimal server arhiteture for a given server depends on the usage

pattern. We observed both the extreme speedup and slowdown mentioned for the event-

driven server arhiteture for the eho server. These benhmarks di�er only in their lient

traÆ patterns.

Thesis Supervisor: Martin Rinard

Title: Assoiate Professor of Eletrial Engineering and Computer Siene
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Chapter 1

Introdution

As mainstream omputing environments shift from isolated personal omputers to networks

of omputers, server programs are beoming an inreasingly important lass of appliation.

We see a wide range of server appliations deployed on the Internet today inluding suh

examples as web servers, instant message servers, IRC servers, news servers, and game

servers among many others.

The lient-server model is a simple abstration to use when developing network-based

appliations. The server typially aepts multiple inoming onnetions and provides some

sort of servie. The lient ontats the server to use whatever servies the server provides.

A ommon example of this interation ours in the web. Web servers suh as Apahe[1℄

provide the servie of delivering web pages. Web browsers suh as Netsape ontat a web

server of interest to request web pages.

Reliability and performane are serious onerns for server software. Businesses often

use servers in environments suh as eletroni ommere where failure translates into diret

loss of inome. Higher performane server software requires fewer mahines for a given

task, whih simpli�es maintenane and saves money. In this report, we evaluate a variety

of arhitetures used to implement servers and their performane impliations.

Industry uses the programming language Java[11℄ for many server side appliations. For

example, many websites use the Volano hat server[12℄, a Java server appliation. Server

appliation developers have an interest in Java partly beause it brings many modern lan-

guage features suh as a strong type system and garbage olletion to mainstream use.

These features allow Java to provide many safety guarantees that languages like C do not
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provide. Furthermore, Java's exible seurity model aids in the development of seure server

appliations.

Features of the Java language and runtime suh as memory management and safety

guarantees are very attrative when developing server appliations. One important lass of

errors that Java prevents is bu�er overruns. In reent years, up to 50% of the CERT advi-

sories were due to bu�er overruns[13℄. Bu�er overruns our when a programmer alloates

a �xed size memory region in whih to store information, and then the programmer allows

ode to write data beyond the end of the region. This typially ours in C programs that

use library routines. The problem is that a maliious attaker an use these bugs to exeute

arbitrary ode. Sine Java provides array bounds heks, bu�er overruns are impossible.

When we design servers, we need to onsider several fators. Although all servers aept

multiple onnetions and provide some servie, they have very di�erent design onerns.

Some servers have very short interations with lients, and in these ases, the overhead

of setting up a onnetion is ritial. Other servers have long interations with many

lients, and in these ases the saling behavior of the server with respet to the number of

simultaneous onnetions is more important.

Programmers have used many di�erent programming models for handling multiple on-

netions in servers. We onsider the following programming models in this report:

Thread-per-onnetion model In this model, there is a single main thread whih a-

epts onnetions and a worker thread for eah opened onnetion. For the worker thread,

the programmer onerns himself or herself with the interations for just one lient. The

simpliity of this model makes it very attrative. The thread pooled arhiteture uses this

same programming model, the only di�erene is how the program assigns onnetions to

threads.

Event-driven model In this model, the programmer thinks in terms of I/O events and

responses the server makes to these events. This model an be more ompliated to develop

for, sine the programmer must expliitly manage I/O events.

In this report, we evaluate several server arhitetures inluding the thread-per-onnetion

arhiteture with either kernel-level (or native) threads or user-level (or green) threads, an

automatially generated event-driven asynhronous I/O arhiteture, and a thread-pooled
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server arhiteture. We develop a performane model for the various arhitetures, and

evaluate the performane model over a range of server benhmarks.

A seond ontribution of this report is the development of a novel ompiler transforma-

tion from a thread-per-onnetion arhiteture to an event-driven arhiteture.

We did all of the implementations using the FLEX ompiler framework[2℄. FLEX is a

full featured, researh Java ompiler developed by our group. Our group designed FLEX

to failitate full and partial program analysis and transformations.
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Chapter 2

Server Arhitetures

Figure 2-1 presents a very simple eho server design. This server aepts one inoming

onnetion at a time and ehoes whatever the lient sends bak to the lient. The problem

with this server is that it is often desirable to allow the server to serve more than one lient

at a time.

lass Eho {

stati publi void main(String args[℄)

throws IOExeption {

ServerSoket s = new ServerSoket(1000); //Open Soket

byte buffer[℄ = new byte[100℄;

while (true) {

Soket lientSoket = s.aept(); //Wait for inoming onnetion

try {

//Get stream objets

OutputStream out = lientSoket.getOutputStream();

InputStream in = lientSoket.getInputStream();

while (true) {

int length = in.read(buffer, 0, buffer.length); //Read input from lient

if (length == -1) break;

out.write(buffer, 0, length); //Send input bak to lient

}

lientSoket.lose(); //Close soket when done

} ath (IOExeption e) {

e.printStakTrae();

}

}

}

}

Figure 2-1: Single Threaded version of an Eho Server

Programmers have developed many di�erent approahes to handling multiple lients

simultaneously with one server. The simplest approah used is similar to simply running

many opies of the single threaded server. We refer to this approah as a thread-per-

onnetion arhiteture. Whenever a new onnetion ours, the server simply starts a
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new thread to handle interations with this onnetion. The programming model for this

approah onsists of oneptual threads that eah handles a single onnetion. If a server

servies thousands of lients, all of the operating system bookkeeping to keep trak of the

various threads an beome quite expensive. Single threaded solutions an avoid some of

this overhead.

Another approah taken to handling multiple lients with one server is to have one thread

keep trak of all of the onnetions. This thread ontinuously heks for new onnetions and

other events from any lients that require attention and runs the appropriate ode to handle

the event that ourred. We refer to this server design as an event-driven arhiteture. The

programming model for this approah onsists of events and responses to these events that

the server makes.

In this hapter, we present in detail the thread-per-onnetion arhiteture using either

the kernel-level or the user-level threads pakages, the thread pooled arhiteture, and the

event-driven arhiteture. We disuss qualitative advantages and disadvantages of eah of

these server arhitetures. We present quantitative results in Chapter 4.

2.1 Thread-per-onnetion arhitetures

Thread-per-onnetion or proess-per-onnetion arhitetures are perhaps the simplest to

develop sine one an use the threading mehanism to manage the ontrol for the many

onnetions servers may have. This server arhiteture allows the programmer to fous on

the ommuniations neessary for a single onnetion. The thread pakage then takes are

of managing the multiple onnetions through the threading mehanism.

In Figure 2-2, we show a simple example of a server written using a thread-per-onnetion

arhiteture. In this example, the main thread waits for an inoming onnetion. Whenever

an inoming onnetion ours, the main thread spawns o� a worker thread and passes the

inoming onnetion o� to the worker thread. Note that the worker thread ode only

expliitly handles one onnetion.

Thread-per-onnetion arhitetures typially follow this simple design pattern. For

eah inoming onnetion, the server spawns a worker thread. The ode for the worker

thread only needs to onern itself with the one onnetion that it manages.

The simpliity of design that this arhiteture provides makes it very attrative for

12



lass Eho {

stati publi void main(String args[℄)

throws IOExeption {

ServerSoket s = new ServerSoket(1000); //Open Soket

while (true) {

Soket  = s.aept(); //Wait for inoming onnetion

Worker w = new Worker();

w.start(); //Start thread to handle inoming onnetion

}

}

}

lass Worker extends Thread {

Soket lientSoket;

OutputStream out;

InputStream in;

Worker(Soket s) {

lientSoket = s;

}

publi void run() {

try {

//Get stream objets

out = lientSoket.getOutputStream();

in = lientSoket.getInputStream();

byte buffer[℄ = new byte[100℄;

while (true) {

int length = doread(buffer); //Read input from lient

if (length == -1) break;

out.write(buffer, 0, length); //Send input bak to lient

}

lientSoket.lose(); //Close soket when done

} ath (IOExeption e) {

e.printStakTrae();

}

}

int doread(byte[℄ buffer) throws java.io.IOExeption {

return in.read(buffer, 0, buffer.length);

}

}

Figure 2-2: Runtime Thread version of an Eho Server

quikly developing and debugging servers. Unfortunately, this arhiteture has to pay some-

times very expensive operating system overheads for thread reation and management.

The atual overheads that one pays depend greatly on the thread implementation. In

this projet, we onsider two thread implementations: one using the LinuxThreads kernel-

level pthreads implementation and another using a lightweight user-level threads pakage.

2.1.1 Thread Implementations

Thread pakages provide programs with the means of running multiple omputations on-

eptually at one. Thread pakages also typially provide funtionality for ontrolling the

exeution of multiple threads and funtionality for sharing resoures.

Programmers use two basi approahes to provide the apability of running multiple
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omputations at one. One approah is to swith between threads. The kernel an do the

thread swithing as in kernel-level threads, or the program an use signals and/or expliit

thread swithes in library alls as is often the ase in user-level thread pakages. A seond

approah is to have multiple proessors on a mahine and to run the threads on di�erent

proessors. However, if the system has more threads than proessors, the thread pakage

must share the proessors between multiple threads. The threads pakage does this by

having the proessor swith between threads, whih is a multiproessor extension of the

�rst approah. This swithing has the downside of inurring additional operating system

overheads and hurting ahe performane.

Some means of oordinating threads is neessary. Thread pakages often provide syn-

hronization funtionality. They also typially provide some sort of loking mehanism to

guarantee exlusive aess to the lok and some sort of wait and signal mehanism.

Threads typially live in the same address spae, and they share resoures suh as �le

desriptors for open �les and streams. These shared resoures allow programmers to easily

pass objets and open �les between threads. This di�ers from the ase of separate proesses,

whih typially do not share the same address spae or �le desriptors.

Programmers ommonly take two basi approahes to implement threads. One approah

is to allow the operating system kernel to handle sheduling and I/O for the threads. We

refer to this approah as kernel-level threads. A seond approah is to allow libraries in

user spae to handle sheduling and I/O for the threads. We refer to this approah as user-

level threads. We disuss these two approahes and the implementations in the following

setions.

2.1.2 Kernel-level Threads

One thread system FLEX's runtime supports is LinuxThreads[14℄. The LinuxThreads li-

brary provides kernel-level thread support. The linux kernel handles sheduling of threads

and I/O.

Our runtime implements kernel-level threads using the LinuxThreads kernel-level lone

based pthread implementation. This implementation alloates a pthread for eah Java

thread. The kernel handles the thread sheduling and I/O.

The salability of LinuxThreads has many limitations. The Linux kernel has a limit

on the number of running proesses, LinuxThreads has a limit on the number of threads
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it an manage, virtual memory spae plaes limits on the number of threads that an be

reated beause eah thread reserves virtual memory for its stak, and the Linux kernel has

algorithms that sale with the number of proesses[14℄.

Another disadvantage of kernel threads is that they are often quite expensive to alloate.

We found this true for LinuxThreads. On our benhmark platform, a 275 Mhz StrongARM

mahine, a Java thread reation using LinuxThreads takes 2.2 milliseonds.

An advantage of using kernel-level threads is that they handle the Java I/O model very

naturally. One simply alls the orresponding bloking I/O primitive and allows the thread

to blok. In this way, the program only inurs one system all overhead for eah I/O request.

2.1.3 User-level Threads

The FLEX runtime also supports user-level threads. User-level threads provide threading

support using only primitives available to user spae programs. The user-level threads pak-

age provides thread multiplexing and I/O primitives. Part of the ompliation of developing

a user-level threads pakage is that the user-level threads pakage annot use bloking I/O

alls, as doing so would ause all of the threads to halt. Instead, the lak of multiple op-

erating system threads requires that we implement the bloking I/O model in Java using

non-bloking primitives.

The user-level thread implementation handles the Java I/O model in a less eÆient

manner than kernel-level threads. It �rst tries the asynhronous version of the I/O request.

If this fails, it performs a thread swith. After some number of thread swithes, it uses the

selet all to hek to see if there is any data ready. If so, it moves any threads that are

now ready into the queue of threads that the sheduler will run. At this point, the thread

pakage must repeat the I/O system all.

Our implementation alloates a stak for eah thread, and performs thread swithes on

bloking I/O alls and synhronization alls. Our user-level thread implementation maps

all of the Java threads to one kernel thread.

Some other examples of user-level thread pakages inlude MIT Threads [10℄, PCR [8℄,

and NSPR [3℄.
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2.2 Thread Pooled Arhiteture

Thread pooled servers attempt to avoid thread reation overheads and saling problems

assoiated with hundreds of threads by simply not reating many threads. Instead, the

server maintains a pool of threads, and as onnetions ome in, the server farms the on-

netions out to a pool of worker threads. Many servers, inluding Apahe[1℄, use this sort

of arhiteture.

Thread pooled servers are not without weaknesses. They an get worker threads tied up

by slow or hostile lients. In this ase, the thread pooled server either has to stop aepting

new onnetions or spawn new threads and pay the thread reation overhead. A greater

onern is that this approah does not generalize well to servers that require ontinuous

onnetions suh as hat servers or game servers.

We show an example of a thread pooled eho server in Figure 2-3. Note that the main

thread begins by reating a pool of worker threads. It then starts aepting onnetions,

and farming them out to the worker threads using a shared list. The worker threads remove

inoming sokets out of the shared list and servie them.

As previously mentioned, the thread pooled arhiteture eliminates thread reation over-

head in most ases. Our implementation of the thread pooled servers use the same underly-

ing kernel-level threads pakage as the thread-per-onnetion arhiteture. The rest of the

overheads in the thread pooled arhiteture are very similar to the thread-per-onnetion

arhiteture with a kernel-level threads implementation. The thread pooled arhiteture

still pays largely the same synhronization and objet ination overheads and bene�ts from

eÆient handling of the Java I/O model from the underlying kernel-level thread implemen-

tation.

2.3 Event-driven Arhiteture

Event-driven arhitetures break down the server proess into a set of I/O events and

omputations that the server does in response to these events. For example, an event-

driven web server would reeive an inoming event in the form of a lient request and

then would exeute the ode to request a �le read. The server would then return to the

event-driven loop. At some point in the loop, the server would hek and see that the read

�nished. One the �le read event �nished, the server would exeute ode to send the data
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read from the �le to the lient.

Event-driven arhitetures poll for I/O events. Upon reeiving an I/O event related to

one of the onnetions, the servers run the appropriate event proessing ode that takes in

some state assoiated with the onnetion and the event. This arhiteture avoids some

thread overheads assoiated with general-purpose thread implementations.

We present an example of an event-driven eho server in Figures 2-4, 2-5, and 2-6. Figure

2-4 shows the ode that responds to aept events and initializes the onnetions. The ode

in Figure 2-5 responds to the server initializing a onnetion and heks for an inoming

message. The ode in Figure 2-6 responds to an inoming message and ehos it bak to the

lient. We omit the event-driven sheduler and I/O libraries for spae reasons.

The reader might notie that these event-driven servers store their loal variables in

heap alloated data strutures when bloking alls our. These heap alloations inur some

overhead for the original alloation and for inreasing the garbage olletion frequeny.

Servers suh as Zeus[15℄ and Flash[9℄ use event-driven arhitetures. The diÆulty with

this arhiteture is that event-driven servers are more diÆult to write than their simpler

thread-per-onnetion ounterparts. The programmer has to expliitly manage all of the

onnetions and write ode in a ompliated event-driven manner. To address these issues,

we present a ompiler transformation from the simple thread-per-onnetion arhiteture

to the event-driven arhiteture.

We disuss this transformation in Chapter 3.

2.4 Qualitative Di�erenes in Server Arhitetures

We explore a thread-per-onnetion arhiteture with both a kernel-level thread implemen-

tation and a user-level thread implementation, a thread pooled arhiteture, and a soure

transformation into an equivalent single threaded event-driven program.

These di�erent server arhitetures have performane and programmability impliations.

The di�erent versions inur di�erent overheads for synhronization, thread reation, I/O,

and proedure returns among other operations. Due to all of these di�erent fators, it is

diÆult to predit the e�et that the thread implementation has on a program's performane

from �rst priniples. Therefore, we hose to explore this spae empirially with a set of server

benhmarks.
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2.4.1 Di�erenes in Performane of the Server Arhitetures

The event-driven arhiteture has almost no synhronization ost, a very low thread reation

overhead, and no per thread stak overhead. Beause it uses heap alloated data strutures,

it inurs greater alloation and proedure return overheads. However, with more eÆient

garbage olletors than we onsidered, this overhead an be diminished[5℄. The event-driven

arhiteture may also inur a greater system all overhead due to its use of asynhronous I/O

primitives. However, the e�et of the system all overheads an also be greatly diminished

by improving the operating system interfae[6℄.

The thread-per-onnetion arhiteture with the user-level thread implementation is

very similar to the event-driven version with the exeption that it inurs a per thread stak

overhead instead of any ontinuation overhead. It also inurs a greater synhronization

overhead.

The thread-per-onnetion arhiteture with the kernel-level thread implementation has

an extremely high overhead for thread reation and a more expensive synhronization over-

head. It inurs a per thread stak overhead. However, it inurs a smaller system all

overhead due to its use of bloking I/O primitives.

The thread pooled arhiteture does not reate many threads, so it does not have a high

thread reation overhead. With this exeption, it behaves very similarly to the thread-per-

onnetion arhiteture with kernel-level threads.

2.4.2 Di�erenes in Programming the Server Arhitetures

The thread-per-onnetion arhitetures are the simplest to program. The developer an

fous on the very simple onnetion oriented model. Eah thread of exeution only needs

to onern itself with one onnetion.

The thread pooled arhiteture is only slightly more ompliated. The worker threads

are very similar to their ounterparts in the thread-per-onnetion arhiteture, but after

�nishing a onnetion, the worker threads have to hek for new onnetions waiting for

servie.

The event-driven arhiteture is perhaps the hardest to program. The programmer

has to expliitly hek for events, respond appropriately to events, and keep trak of data

strutures for all of the threads. Notie that in the event-driven example in Figures 2-4, 2-5,
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and 2-6, that most of the ode length omes from manipulating data strutures to expliitly

store and reload the onnetion's state. However, the transformation presented in the next

hapter largely removes this disadvantage.
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lass Eho {

stati publi void main(String args[℄)

throws IOExeption {

int ps = 4;

ServerSoket s = new ServerSoket(1000);

LinkedList ll=new LinkedList();

for(int i=0;i<ps;i++) {

//Create pool of worker threads

Worker w=new Worker(ll);

w.start();

}

while (true) {

Soket  = s.aept();

synhronized(ll) {

//Farm out the inoming onnetion

//to the pool of worker threads

ll.add();

ll.notify();

}

}

}

}

lass Worker extends Thread {

LinkedList ll;

Worker(LinkedList ll) {

this.ll=ll;

}

publi void run() {

Soket lientSoket;

while(true) {

lientSoket=null;

synhronized(ll) {

do {

try {

//get an inoming onnetion

lientSoket=(java.net.Soket)ll.removeFirst();

} ath (Exeption e) {

try {

//sleep if the linked list

//is empty

ll.wait();

} ath (Exeption ee) {

ee.printStakTrae();

}

}

} while(lientSoket==null);

}

try {

OutputStream out = lientSoket.getOutputStream();

InputStream in = lientSoket.getInputStream();

byte buffer[℄ = new byte[100℄;

while (true) {

int length = in.read(buffer, 0, buffer.length);

if (length == -1) break;

out.write(buffer, 0, length);

}

lientSoket.lose();

} ath (IOExeption e) {

System.err.println("IOExeption in Worker "+e);

}

}

}

}

Figure 2-3: Thread Pooled version of an Eho Server
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lass Eho {

stati publi VoidContinuation mainAsyn

(String args[℄) throws IOExeption {

ServerSoket s = new ServerSoket(1000);

while (true) {

ObjetContinuation o = s.aeptAsyn();

if (o.done==false) {

Environment e=new mainEnvironment(s);

mainContinuation m=new mainContinuation(e);

o.setNext(m);

return m;

} else {

Soket =(Soket)o.value;

Worker w=new Worker();

w.startAsyn();

}

}

}

}

lass mainEnvironment {

Objet o1;

publi mainEnvironment(Objet o1) {

this.o1=o1;

}

}

lass mainContinuation implements

ObjetResultContinuation {

mainEnvironment env;

publi mainContinuation(mainEnvironment env) {

this.env=env;

}

publi void resume(Objet 1) {

Soket =(Soket)1;

ServerSoket s=(Soket)env.o1;

Worker w = new Worker();

w.startAsyn();

while(true) {

ObjetContinuation o = s.aeptAsyn();

if (o.done==false) {

env.o1=s;

.setNext(this);

} else {

=(Soket)o.value;

w=new Worker();

w.startAsyn();

}

}

}

}

Figure 2-4: Event-Driven version of Connetion Thread
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lass Worker extends Thread {

Soket lientSoket;

OutputStream out;

InputStream in;

Worker(Soket s) {

lientSoket = s;

}

publi VoidContinuation runAsyn() {

try {

out = lientSoket.getOutputStream();

in = lientSoket.getInputStream();

byte buffer[℄ = new byte[100℄;

while (true) {

IntContinuation i = doreadAsyn(buffer);

if (i.done==false) {

runEnvironment re=new runEnvironment(this,buffer);

runContinuation r=new runContinuation(re);

i.setNext(r);

return r;

} else {

int length=i.value;

if (length == -1 )

break;

out.write(buffer,0,length);

}

}

lientSoket.lose();

} ath(IOExeption e) {

e.printStakTrae();

}

return VoidDoneContinuation();

}

IntContinuation doreadAsyn(byte[℄ buffer)

throws java.io.IOExeption {

IntContinuation i=in.readAsyn(buffer, 0, buffer.length);

if (i.done==false) {

readEnvironment re=new readEnvironment();

readContinuation r=new readContinuation(re);

i.setNext(r);

return r;

} else {

return new IntDoneContinuation(i.value);

}

}

}

lass runEnvironment {

Objet o1,o2;

publi runEnvironment(Objet o1, Objet o2) {

this.o1=o1;

this.o2=o2;

}

}

Figure 2-5: Event-Driven version of Worker Thread
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lass runContinuation implements

VoidContinuation,IntResultContinuation {

runEnvironment re;

publi runContinuation(runEnvironment re) {

this.re=re;

}

publi void resume(int length) {

Worker this1=(Worker)re.o1;

byte buffer[℄=(buffer[℄)re.o2;

try {

if (length== -1) {

lientSoket.lose();

if (next==null)

return;

else

next.resume();

}

this1.out.write(buffer, 0, length);

while(true) {

IntContinuation i = doreadAsyn(buffer);

if (i.done==false) {

re.o1=this1;

re.o2=buffer;

i.setNext(this);

return;

} else {

length=i.value;

if (length==-1) break;

this1.out.write(buffer, 0, length);

}

}

lientSoket.lose();

if (next==null)

return;

else

next.resume();

} ath (IOExeption e) {

e.printStakTrae();

if (next==null)

return;

else

next.resume();

}

}

}

lass readEnvironment {

}

lass readContinuation implements IntResultContinuation {

readEnvironment env;

IntResultContinuation next;

publi readContinuatiuon(readEnvironment env) {

this.env=env;

}

publi setNext(IntResultContinuation next) {

this.next=next;

}

publi void resume(int length) {

next.resume(length);

}

}

Figure 2-6: Event-Driven version of Worker Thread
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Chapter 3

Event-driven Transformation

3.1 Continuation Passing Style Conversion

The programming language ommunity originally developed Continuation Passing Style or

CPS Conversion to simplify ontrol-ow to aid in the ompilation of funtional languages.

The basi idea is that every proedure all takes in an additional argument, a funtion that

expresses the remaining omputation. The CPS onversion algorithm results in onverted

programs where every proedure all is in the tail all position, whih is the last statement

exeuted in a proedure, and where no proedure alls return.

In Figure 3-2, we show a simple Java example of CPS onversion. In Figure 3-1, we

show the original program, and in Figure 3-2, we show the CPS onverted program. We

use lasses to enapsulate the ode and environments for ontinuations.

Every proedure all in the transformed version takes in a ontinuation in addition to

its previous arguments. Moreover, every path through every proedure makes exatly one

all, a tail all at the very end of the proedure. A more omplex Java program that used

loal variables would use environments to store the loal variables.

lass Original {

stati publi void main() {

System.out.println(foo());

System.exit();

}

int foo() {

return 2;

}

}

Figure 3-1: Original Sample Program

The relevant property of CPS onversion for our event-driven transformation is that the
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lass Converted {

stati publi void main() {

foo(new IntContinuation1());

}

void foo(IntContinuation a) {

a.ontinuation(2);

}

}

lass IntContinuation1 implements IntContinuation {

publi ontinuation(int i) {

System.out.println(i, new VoidContinuation1());

}

}

lass VoidContinuation1 implements VoidContinuation {

publi ontinuation() {

System.exit();

}

}

Figure 3-2: Example of CPS Conversion for a Java Program

thread stores all of its remaining state in the ontinuation. We an use a modi�ed form of

CPS to return the ontinuation to a sheduler instead of having proedures diretly invoke

ontinuations. This provides a mehanism for suspending and resuming omputations.

CPS onversion for suspended alls makes proedure alls muh more expensive. Instead

of simply storing loal variables on a stak, CPS onverted programs alloate a heap objet,

opy the loal variables into the heap objet, and then opy the loal variables out of the

heap objet. To minimize this additional overhead, we use a seletive CPS onversion. We

disuss this onversion in more detail in the following setion.

3.2 Basi Transformation

To onvert programs from the multithreaded, bloking I/O model into the event-driven I/O

model, we identify I/O operations that may potentially blok. At these points, we need the

ability to suspend the omputation of one thread and to resume it later when the I/O is

ready. To do this, we use a modi�ed CPS onversion.

The �rst modi�ation is that the program passes ontinuations bak to a sheduler.

The sheduler exeutes the ontinuation only when the I/O is ready. Instead of passing

ontinuations into methods, we have methods return a ontinuation that represents the

remaining omputation for the alled method. In this way, we enable optimizations that

avoid the overhead of generating unneessary ontinuations and invoking the sheduler.

The seond modi�ation is a performane onern. The overhead of generating on-
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tinuations at every proedure ould be quite substantial. Sine the program requires the

apability to suspend and resume the omputation only when the program exeutes blok-

ing I/O primitives, we only need to generate ontinuations for methods in all hains that

end in a potentially bloking I/O primitive.

We identify bloking I/O primitives by hand auditing the native alls in the Java lass

library to determine the set of native I/O methods that may blok. We refer to these

as diretly bloking methods. We provide replaement asynhronous versions for diretly

bloking methods that return ontinuations.

At ompile time, the ompiler identi�es all methods that may be part of a all hain that

ends with the program alling a diretly bloking method. We do this by generating a all

graph and identifying all methods that an diretly or indiretly all one of the identi�ed

bloking I/O primitives. We refer to these methods as indiretly bloking methods. Our

ompiler transforms indiretly bloking methods into methods that return ontinuations.

For eÆieny reasons, it is important to have a preise all graph. This minimizes

the unneessary use of the more expensive ontinuation passing style alling onvention.

Our implementation uses a all graph algorithm similar to Ole Agesen's Cartesian produt

algorithm [4℄.

For an indiretly bloking method, the ompiler identi�es any all sites that may all

diretly or indiretly bloking methods. The ompiler replaes eah of these all sites with

a all to the replaement version of the method, whih returns a ontinuation. After eah

one of these all sites, the ompiler generates a ontinuation objet for the urrent method.

The ontinuation inludes an environment for storing the values of live loal variables, a

normal resume method ontaining ode for the omputer to exeute upon the normal return

of the all site's allee, and a exeptional resume method ontaining ode for the omputer

to exeute if the all site's allee throws an exeption.

The allee method needs a pointer to the aller, so that upon ompletion it an run the

aller's ontinuation. In order to do this, the transformed ode returns the ontinuation it

built in the urrent method to the aller. After the aller builds its ontinuation objet, the

aller sets a link from the allee's ontinuation objet to the aller's ontinuation objet.

The transform also needs to handle the ase where a potentially bloking method does

not blok. To do this, the transformed ode must wrap the return value in an identity

ontinuation for any return or throw statements reahable in a method without alling a
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possibly bloking method.

The generated resume methods start by unpaking the loal variables from the environ-

ment. The resume method must inlude all the ode in the original method that is reahable

from the return of the original all site. For any potentially bloking all site, the resume

method takes the returned ontinuation, links it to the previously stored next ontinuation,

and returns to the sheduler. For return or throw instrutions, the resume method simply

alls the resume method of the alling method with the appropriate value in its linked next

ontinuation.

For any non-bloking method that may be alled at the same site as a bloking method

due to virtual alls, the ompiler must generate a separate version with the same alling

semantis as the bloking methods.

An event-driven sheduler manages the ontinuations, polls selet for pending I/O, and

provides thread funtionality.

3.3 Optimizations to the Basi Transformation

The basi transformation provides the opportunity for many optimizations. The obvious

one is that when no bloking I/O operation has ourred or the I/O is immediately ready,

it is not neessary to inur the overhead of generating ontinuations and returning to the

sheduler. We implement an optimization where I/O operations may optimistially return

a value if possible. Continuation objets ontain a ag indiating whether the aller an

immediately reover the return value of the allee, or whether it must return to the sheduler.

Another optimization used is that in loops with bloking I/O, it is often the ase that

the same all site bloks in every iteration. In this ase, we an simply reuse the data

strutures from the previous iteration. By reyling the ontinuations, we avoid the overhead

of requesting new memory and garbage olleting the old ontinuations.

Our transformation as implemented and the example below use both of these optimiza-

tions.

3.4 Example

For our example, we onsider the simple eho server shown in Figure 2-2. A all graph tells

us that the methods main, run, and doread an potentially diretly or indiretly all the
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bloking I/O primitives, read and aept. Therefore, the ompiler needs to transform all of

these methods.

In the method main, the analysis identi�es a potentially bloking I/O primitive, aept.

At this point, the ompiler inserts ode that saves the state of the thread if the aept all

an not immediately return a soket.

The ompiler builds the lass mainEnvironment to store the live loal register values at

the aept all, and the lass mainContinuation to store the ode for the remaining ompu-

tation in the main method. The transformed resume method in the lass mainContinuation

�rst restores the live loal variables and then ontinues with the remaining omputation

for the method. The transformed method uses the reyling optimization. If this method

bloks at the aept all, it simply reuses the old ontinuation objets. We reprodue the

transformed ode for the Eho lass in Figure 3-3 from Chapter 2 for the reader's onve-

niene.

If a bloking method has a potentially non-bloking exeution path, the method's type

still requires it to return an objet of a ontinuation type to the aller. The runAsyn

method shows an example of this using the \return VoidDoneContinuation()" statement to

generate an identity ontinuation.

We show the transformed ode for the worker lass in Figure 3-4 and 3-5.

3.5 Extensions

We optimized our implementation of the event-driven transformation and sheduler for what

we believe to be ommon paradigms in server appliations. Our implementation assumes

that eah thread will exeute a �nite number of non-bloking instrutions between eah

bloking I/O primitive and that no program holds a lok while alling a bloking I/O

primitive. Our implementation only supports uni-proessors. We an trivially remove all of

these limitations, but in doing so, the transformed servers inur some additional overhead.

We desribe these extensions below.

We an develop further optimizations to redue the overheads inurred in the event-

driven transformations. One suh optimization is expliitly managing the memory used for

the ontinuations. We disuss this optimization in detail later in this setion.

The event-driven transformation is useful for arhitetures other than just using our
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asynhronous I/O library to generate a single-proess event-driven server. We disuss these

other possibilities later in this setion.

Synhronization and other Threading Construts Support for synhronization an

be added using a two step proess. The �rst step is to determine whih synhronization

operations need to remain. For an ineÆient implementation, we an skip this step and

leave all the synhronization operations in the program. Otherwise, this an be done using

a �xed point algorithm and the results from a pointer analysis algorithm. We also need to

add the wait methods to our list of primitive bloking methods.

By synhronization, we mean simple mutual exlusion loks. Java byteode enodes the

operation to aquire a lok as a monitorenter instrution and the operation to release a

lok as a monitorexit instrution. The Java language onstruts that an result in the gen-

eration of monitorenter and monitorexit instrutions result in the generation of strutured

pairs. Unfortunately, arbitrary sequenes of monitorenter and monitorexit instrutions are

legal in byteode. For example, Java an only generate nested sequenes of loks like moni-

torenter A, monitorenter B, monitorexit B, monitorexit A. However, one an legally express

monitorenter A, monitorenter B, monitorexit A, monitorexit B in byteode.

Therefore, the analysis needs to be orret for arbitrary loking sequenes, but preise

only for the paired loking onstruts that the Java language generates.

The �rst stage of suh an analysis would onsist of reognizing the paired monitorenter

and monitorexit onstruts that exists in the original Java language. To do this, the analysis

would begin with a dataow analysis on eah allable method. The dataow analysis would

determine at eah program point whih loks the method obtained and in whih order. This

type of analysis is possible beause the monitorenter and monitorexit statements obtain the

objet from the same loal pointer. At merge statements, the analysis would hek that

the inoming points have aquired the same loks in the same order. If the inoming

program points had not, the analysis would onservatively delare all of the loks that

any of the inoming program points to the merge had aquired as neessary. If at any

monitorexit statement the pairing property does not hold, the analysis delares all the loks

that the o�ending statement holds as neessary. When the analysis delares a monitorenter

statement as neessary, the analysis must also delare all other monitorenter statements

that may lok on the same objets as neessary. We use the results of the pointer analysis
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to onservatively mark these other monitorenter sites as neessary.

The seond part of the analysis is a �xed point algorithm. The algorithm would begin

with a set of methods S that ontain loks that the analysis delared neessary or that indi-

retly or diretly bloking. The algorithm would yle through all of the allable methods

in the program, looking for all sites that may all any method in S. When the analysis

�nds suh a all site, the analysis delares all loks that the �rst stage of the analysis indi-

ates as being held at this point as neessary. The analysis delares any monitorenter site

that may operate on the same objet as these loks as neessary, and the analysis adds the

appropriate set of methods to S. The analysis ontinues yling through all of the allable

methods until the analysis reahes a �xed point.

Upon termination, the algorithm guarantees that any monitorenter/monitorexit pair

surrounding any possible thread swith point an generate a ontinuation at the moni-

torenter all. The algorithm terminates beause there are only a �nite number of synhro-

nization operations that the analysis may delare neessary.

The seond part of the proess is to treat the monitorenter statements that we left in as

potentially bloking for the event-driven transformation. We build optimisti ontinuations

at these statements. Support for synhronization and methods suh as notify/wait would

then be implemented in the event-driven sheduler.

Fairness The urrent implementation makes no fairness guarantees. If some thread ex-

eutes an in�nite loop that does not ontain a bloking I/O operation, all other threads

will starve. We ould �x this by looking for bak edges in the graph representation of the

method. By simply treating bak edges as we would treat bloking alls and returning to

the sheduler, we an remove this limitation.

Multiproessor Support We an support multiproessors by allowing the sheduler to

run multiple ontinuations at one. Beause of the additional onurreny allowed in this

system, all synhronization statements that the standard multithreaded version requires

must remain in the multiproessor event-driven version.

Multiproessor support requires that we modify the event-driven sheduler to allow more

the shedule to exeute more than one ontinuation at one.
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Expliit ontinuation/environment management One soure of overhead in our im-

plementation of the event-driven transformation is that the ontinuations are heap alloated.

At every single bloking funtion all site, the transformed program generates a ontinuation

objet. These ontinuation objets have lifetimes that mirror the original stak implemen-

tation. Therefore, the program ould alloate �xed areas of memory for eah of the original

threads to store the ontinuations.

Other I/O libraries The event-driven transformation an be easily adapted to use other

asynhronous I/O libraries. One ould also use event-driven I/O models suh as the asym-

metri multi-proess event-driven (AMPED) arhiteture that the Flash webserver[9℄ uses.

The AMPED arhiteture addresses the issue that in some ases for some versions of UNIX,

non-bloking reads may atually blok on disk �les. The AMPED arhiteture works around

this problem by using a pool of worker threads to handle �le reads. By simply dropping in a

replaement I/O library, our transformation an automatially generate the orresponding

event-driven servers from servers written in the thread-per-onnetion arhiteture.
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lass Eho {

stati publi VoidContinuation mainAsyn

(String args[℄) throws IOExeption {

ServerSoket s = new ServerSoket(1000);

while (true) {

ObjetContinuation o = s.aeptAsyn();

if (o.done==false) {

Environment e=new mainEnvironment(s);

mainContinuation m=new mainContinuation(e);

o.setNext(m);

return m;

} else {

Soket =(Soket)o.value;

Worker w=new Worker();

w.startAsyn();

}

}

}

}

lass mainEnvironment {

Objet o1;

publi mainEnvironment(Objet o1) {

this.o1=o1;

}

}

lass mainContinuation implements

ObjetResultContinuation {

mainEnvironment env;

publi mainContinuation(mainEnvironment env) {

this.env=env;

}

publi void resume(Objet 1) {

Soket =(Soket)1;

ServerSoket s=(Soket)env.o1;

Worker w = new Worker();

w.startAsyn();

while(true) {

ObjetContinuation o = s.aeptAsyn();

if (o.done==false) {

env.o1=s;

.setNext(this);

} else {

=(Soket)o.value;

w=new Worker();

w.startAsyn();

}

}

}

}

Figure 3-3: Event-Driven version of Connetion Thread
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lass Worker extends Thread {

Soket lientSoket;

OutputStream out;

InputStream in;

Worker(Soket s) {

lientSoket = s;

}

publi VoidContinuation runAsyn() {

try {

out = lientSoket.getOutputStream();

in = lientSoket.getInputStream();

byte buffer[℄ = new byte[100℄;

while (true) {

IntContinuation i = doreadAsyn(buffer);

if (i.done==false) {

runEnvironment re=new runEnvironment(this,buffer);

runContinuation r=new runContinuation(re);

i.setNext(r);

return r;

} else {

int length=i.value;

if (length == -1 )

break;

out.write(buffer,0,length);

}

}

lientSoket.lose();

} ath(IOExeption e) {

e.printStakTrae();

}

return VoidDoneContinuation();

}

IntContinuation doreadAsyn(byte[℄ buffer)

throws java.io.IOExeption {

IntContinuation i=in.readAsyn(buffer, 0, buffer.length);

if (i.done==false) {

readEnvironment re=new readEnvironment();

readContinuation r=new readContinuation(re);

i.setNext(r);

return r;

} else {

return new IntDoneContinuation(i.value);

}

}

}

lass runEnvironment {

Objet o1,o2;

publi runEnvironment(Objet o1, Objet o2) {

this.o1=o1;

this.o2=o2;

}

}

Figure 3-4: Event-Driven version of Worker Thread
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lass runContinuation implements

VoidContinuation,IntResultContinuation {

runEnvironment re;

publi runContinuation(runEnvironment re) {

this.re=re;

}

publi void resume(int length) {

Worker this1=(Worker)re.o1;

byte buffer[℄=(buffer[℄)re.o2;

try {

if (length== -1) {

lientSoket.lose();

if (next==null)

return;

else

next.resume();

}

this1.out.write(buffer, 0, length);

while(true) {

IntContinuation i = doreadAsyn(buffer);

if (i.done==false) {

re.o1=this1;

re.o2=buffer;

i.setNext(this);

return;

} else {

length=i.value;

if (length==-1) break;

this1.out.write(buffer, 0, length);

}

}

lientSoket.lose();

if (next==null)

return;

else

next.resume();

} ath (IOExeption e) {

e.printStakTrae();

if (next==null)

return;

else

next.resume();

}

}

}

lass readEnvironment {

}

lass readContinuation implements IntResultContinuation {

readEnvironment env;

IntResultContinuation next;

publi readContinuatiuon(readEnvironment env) {

this.env=env;

}

publi setNext(IntResultContinuation next) {

this.next=next;

}

publi void resume(int length) {

next.resume(length);

}

}

Figure 3-5: Event-Driven version of Worker Thread
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Chapter 4

Empirial Evaluation

In this setion, we quantify the performane di�erenes of the various server arhitetures

aross a variety of server appliations. Note that we ontinue to use the term arhiteture

to refer to software design and not to refer to the various hardware platforms introdued

in this hapter. The fators in the performane di�erenes between the various server ar-

hitetures an be quite ompliated, and they an inlude fators suh as how the server

handles onurreny, the ahing system, overheads of building ontinuations, and di�er-

enes in GC performane among many other things. We examine the performane of these

servers in a muh simpler model. We believe that for many appliations, the most sig-

ni�ant di�erenes between the server arhitetures are the thread reation overhead, the

synhronization overhead, and the objet ination overhead.

4.1 Performane Model

We use a simpli�ed model for exeution time of the servers for a given workload as follows:

t

total

= t

arhiteture independent

+ t

arhiteture dependent

t

arhiteture dependent

= t

thread reation

+ t

objet inflation

+ t

synhronization

This model separates the arhiteture independent ost t

arhiteture independent

from the

implementation dependent ost. The arhiteture independent time onsists of the time the

program spends exeuting or waiting on operations that we do not model as being di�erent

between the arhitetures.

There are other arhiteture dependent fators that we omit in this desription of server
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performane. These omitted fators are typially small relative to the modelled ones. This

is not true for all possible server behaviors, and an example of this shows up in the serial

eho benhmark and we disuss this example in later setions.

The thread reation overhead is how muh time the proessor uses per thread reation

operation. Some implementations of threads have rather ostly thread reation operations.

The synhronization overhead is how muh time the server uses per synhronization opera-

tion on an objet. The objet ination is how muh time the server uses per objet ination

operation. Objet ination ours beause the runtime does not alloate memory by default

for some strutures, instead the runtime alloates memory on demand for the �rst operation

requiring one of these strutures. One suh operation is objet synhronization. We disuss

the auses of these overheads in more depth in the next setion.

We begin by measuring thread reation, synhronization, and objet ination overheads

with mirobenhmarks. We use these measured overheads with runtime instrumentation

ounts to gain insight into the performane of the various server arhitetures.

4.2 Disussion of Overheads

In this setion, we disuss the thread reation, synhronization, and objet ination over-

heads in more detail.

4.2.1 Thread Creation

When a program reates a thread, the runtime must do some amount of work to set up the

appropriate bookkeeping strutures and resoures. For example, in order to reate a new

thread in Linux's kernel-level threads implementation, the thread pakage reserves virtual

memory for the stak, adds a proess entry to the kernel tables, and sets up strutures

inside the thread library. For user-level threads, the runtime must alloate a stak, the

runtime must alloate and initialize thread spei� data strutures, and the runtime must

add the thread to the ready queue. These ations take some amount of time that depends

on the thread implementation. We quantify this overhead as the thread reation overhead.
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4.2.2 Objet Ination and Synhronization

Synhronization and objet ination overheads are losely related. The Java language

provides loking primitives that allow threads to lok, suspend, or wake suspended threads.

Moreover, Java assoiates a full-featured lok struture with every objet reated in the

program.

To implement loks, thread pakages need some amount of memory for keeping trak of

the lok state. To avoid having to alloate this amount of memory for every objet reated

by a Java program, many Java implementations do not alloate the memory required for

the loking data struture for a given objet until a loking operation atually ours on

that objet. At this point, an operation known as objet ination ours.

In Java, eah objet has a hashode assoiated with it. In our ompiler, for inated

objets we reuse this spae as a pointer to an inated objet data struture, and move

the hashode to the inated objet data struture. In the ase of our ompiler, the pro-

gram alloates memory for the lok data struture for the given objet, moves the objet's

hashode to the newly alloated memory, ips an unused bit in the hashode to ag the

hange, and uses the remaining bits of the hash ode to point to the newly alloated mem-

ory. E�etively, the proess of inating objets gives an additional overhead to the �rst

synhronization operation to our on an objet. This overhead is the objet ination

overhead.

To guarantee exlusive aess to a lok, the program must exeute some algorithm

eah time it alls a loking primitive. The time this algorithm takes to exeute is the

synhronization overhead.

4.3 Experimental Setup

Our experimental setup onsists of a lient simulator running on a 866 Mhz Pentium III

proessor with 512 MB of memory, and a server running on a Netwinder with a 275 Mhz

StrongARM proessor with 128 MB of memory. We onneted the two omputers via 100

megabit Ethernet through a LinkSYS 5 port 10/100 baseT Ethernet swith. We isolated

the test network to prevent outside traÆ from inuening the results.

We hose this benhmark platform to insure that the server's performane was the

bottlenek. We hose a relatively fast lient mahine and network to ensure that the server
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is always busy. We wrote the lients in either C or Java. We ompiled the Java lients

for the Pentium III using our ompiler's C bakend with the event-driven transformation

enabled.

4.4 Measuring Overheads

In this setion, we disuss how we measure the thread reation, synhronization, and objet

ination overheads with mirobenhmarks. Knowledge of these overheads along with ounts

of the given operation allows us to alulate the arhiteture dependent times disussed in

the previous setion.

Our thread reation mirobenhmark simply exeutes 10,000 thread reations, runs,

and joins for threads that exeute the empty method under eah arhiteture. For eah

arhiteture, we present the average ost of this in Table 4.1. This benhmark is not

appliable to the thread pooled server sine thread pooled servers do not reate threads

exept for a stati pool at the beginning of exeution.

Our synhronization mirobenhmark aptures the synhronization ost and the objet

ination ost. The mirobenhmark does this by synhronizing on the same objet many

times in a loop. This gives us the time taken for a synhronization operation.

A separate loop synhronizes on newly reated objets many times in a loop. This gives

us the time taken for a synhronization operation, an objet ination operation, and an

objet alloation. To separate the objet ination ost, we measure the alloation ost in a

separate loop that simply alloates new objets. With all of the osts known, we an simply

subtrat to alulate the ost of objet ination.

We present the results of the objet synhronization and ination benhmarks in Table

4.1. Note that the synhronization ost shown for the event-driven version of the server

is simply the ost of a native all to an empty routine. These alls remain, beause the

transformation does not attempt to remove them. The event-driven version performs no

atual synhronization.

4.5 Benhmarks

Our set of benhmarks inludes: Chat, Quote, HTTP, Eho, Game, Phone, and Time. We

intend these benhmarks to simulate many real world server appliations.
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Server Arhiteture Event-Driven Thread Pooled Thread-Per-Connetion Thread-Per-Connetion

w/ Native Threads w/ User Spae Threads

Thread Creation 0.21 N/A 2.21 0.65

Cost (ms)

Objet Ination N/A 0.04333 0.04333 0.03212

Cost (ms)

Synhronization 0.0014 0.0044 0.0044 0.0025

Cost (ms)

Table 4.1: Mirobenhmark Results for Server Arhitetures

Chat Server The hat server is a simple multiperson hat room server. A user onnets

to it, and the server rebroadasts any messages inputted to all other users. Our lient

simulation opens a set of onnetions to the server, eah onnetion sends a number of

messages, and then waits for the server to deliver all the messages. The hat server is a

modi�ed version of a hat server written by Lou Shiano and it is available on the web at

http://www.geoities.om/SilionValley/Bay/6879/hat.html.

Quote Server The quote server is a simple stok quote server. A lient onnets to the

server and requests the pries of various stoks. Our lient simulation starts o� a number

of threads, eah thread repeatedly requests a stok prie and waits for a response from

the server before going to the next request. The quote server is a modi�ed version of

StokQuoteServer written by David W. Baker, and it is available in Que's Speial Edition

Using Java, 2nd Edition.

HTTP Server The HTTP server is a simple web server. Our lient simulation attempts

to simultaneously request web pages from the servers. The HTTP server is a modi�ed

version of JhttpServer written by Duane M. Gran.

Eho Server The eho server simply ehoes any input bak to the lient. We have four

di�erent lients for this server. The serial eho benhmark opens a set of onnetions, does

a request and a response on eah onnetion in order, and then yles through the request

and response sequene for a number of times. In this benhmark, only one onnetion at a

time ever has data sent aross it.

The limited parallelism eho benhmark opens a set of onnetions, sends a request

down eah onnetion, reads the response and sends another request for eah onnetion

in order, and �nally repeats the last step for a number of times. In this benhmark, many

onnetions an be ative at one.
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The long onnetion eho benhmark opens a set of onnetions, sends a message down

all of the onnetions, and then waits for responses. When any response omes in, the

lient simulator immediately sends another request until it has sent the desired number

of messages aross eah onnetion. In this benhmark, the lient simulator keeps many

onnetions ative at one.

The short onnetion eho benhmark opens a pool of onnetions and sends messages

down them. Whenever the lient simulator reeives a response, it loses the orresponding

onnetion, opens a new one, and repeats until the lient simulator has sent the desired

number of requests and reeived the desired number of responses. In this benhmark, the

lient simulator keeps many onnetions ative at one.

Game Server We designed the game server to simulate a server that pairs online game

lients. The lient simulator simply opens pairs of onnetions and pings messages bak

and forth over these onnetions.

Phone Server The phone server provides phone look up and phone entry servies to in-

oming onnetions. The lient simulator simply onnets to the server, and eah onnetion

adds one entry to the database.

Time Server The time server simply tells any inoming onnetions the urrent time.

Our simulation attempts to keep open a ertain number of onnetions querying the server

for the time.

4.6 Benhmark Methodology

We exeuted the benhmarks on an isolated network of two mahines. Eah mahine only

ran the benhmark proesses and neessary system proesses. We hardoded the mapping

of hostnames to IP addresses using the /et/hosts name resolution mehanism in Linux.

We repeated eah benhmark 30 times and averaged the results.

The ompiler instrumented the binaries to ount synhronization and ination opera-

tions. We alulated the number of thread reations from the lients' onnetion pattern.

The lients attempted to maintain a load of 50 ative lient onnetions on the server. In

some ases, suh as the short onnetion eho benhmark, although the lient may attempt
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to reate a load of 50 lients, the server does not atually see 50 simultaneous ative threads.

This is beause the 50 ative onnetions the lient sees inludes onnetions the server has

already served but are waiting in operating system bu�ers and onnetions that the server

hasn't aepted yet but are waiting in operating system bu�ers.

We on�gured the thread pooled servers to use pools of 4 worker threads for the short

eho, the time, the http, and the phone benhmarks. The rest of the benhmarks required

more than 4 onnetions open at one, so we set the pool size to the number of simulated

lients. We empirially determined the number 4 to yield good results for our setup.

4.7 Benhmark Results

In this setion, we present and disuss the benhmark results. We evaluate the perfor-

mane model in qualitative terms, with a quantitative evaluation of the performane model

appearing in a later setion.

Eho and Time Servers In Figure 4-1, we present the benhmark results for the eho

server using the limited parallelism eho benhmark, the long onnetion eho benhmark,

and the short onnetion eho benhmark; and the time server. These servers are the

simplest in our benhmark suite. Modeling the performane of these benhmarks in terms

of an arhiteture independent exeution time plus a thread reation overhead, an objet

ination overhead, and a synhronization overhead works extremely well.

For omparison to the results in Figure 4-1, we benhmarked an event-driven C version

of the server. The C version takes 1.60 seonds for parallel eho benhmark, 1.64 seonds

for the long onnetion eho benhmark, and 3.25 seonds for the short onnetion eho

benhmark. The C eho server takes roughly a third less time for the benhmarks. This

extra time the Java server takes an likely be attributed to additional safety heks suh as

array bounds heks that are present in the Java version, a more generalized event-driven

support system, native all overheads, and optimization di�erenes between our researh

Java ompiler and a prodution C ompiler. The Java version of the eho server does not

make extensive use of the lass library funtionality, so this should not play muh of a role.

The parallel eho and long eho benhmarks perform about the same for all the arhite-

tures. This is beause they do not reate threads during the exeution and exeute minimal

synhronization operations.
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Server arhitetures with low thread reation overheads like the event-driven or thread-

pooled arhitetures do extremely well on the short eho and time benhmarks. This is due

to the large number of threads reated by these benhmarks. Note that the arhiteture

independent time is similar for all of the benhmarks, indiating that the performane model

works well for these benhmarks.

In Figure 4-2, we present the benhmark results for the game, web, hat, phone and

quote servers. Our simple performane model works well on most of these servers, but it

does break down somewhat on the quote and game server.

Chat Server The hat server reates very few threads during its exeution. A more

important fator in the performane of the hat server is the synhronization overhead.

The performane model appears to work reasonably well for the hat server with some

imperfetion for the user-level threads.

Quote Server The quote server benhmark reates very few threads during its exeution

beause the lient simulator only opens 50 onnetions at the very beginning. Beause of this

onnetion pattern, the thread reation overhead is not very important in this benhmark.

The event-driven and user-level thread arhitetures do better on this benhmark than the

performane model predits.

HTTP Server For omparison to the http server results in Figure 4-2, Apahe takes

4.30 seonds to omplete the same task. The large performane di�erene between Apahe

and our web servers an likely be attributed to extensive use of ineÆient lass library

funtionality, additional safety heks suh as array bounds heks that are present in the

Java version, native all overhead, and optimization di�erenes between our researh Java

ompiler and a prodution C ompiler. The http server benhmark bene�ts from arhite-

tures with low thread reation overheads and from low objet ination overheads. Note

that the arhiteture independent time is similar for all of the arhitetures, indiating that

the performane model works well for this benhmark.

Game Server The game server benhmark reates very few threads during its exeution,

so thread reation overhead is not very important. The event-driven and user-level thread

arhitetures do better on this benhmark than the performane model predits.
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Phone Server The phone server benhmark bene�ts from low thread reation overheads

and from low objet ination overheads. Note that the arhiteture independent time for the

phone server benhmark is similar for all of arhitetures, indiating that the performane

model works well for this benhmark.

Serial Eho Benhmark In Figure 4-3, we present a benhmark for whih the model

breaks down. For omparison to these results, the C version of the eho server takes 3.16

seonds to exeute the serial eho benhmark. Note that this is slower than the thread-per-

onnetion benhmark with the kernel-level threads implementation. This is beause the

event-driven C server su�ers from the same problem as the event-driven Java version and

the user-level threads version.

This benhmark demonstrates a problemati behavior region for the event-driven and

user-level thread implementations. After every inoming onnetion, these servers must

all selet, beause there are no other ontinuations or threads ready for exeution. Sine

the lient only interats with one onnetion at a time, the server an never amortize the

overhead of alling selet and proessing the returned results over multiple threads. This

benhmark alls selet 5,000 times, whereas the parallel version only alls selet 100 times.

But both of these benhmarks send the same total volume of traÆ over the same number

of onnetions. Eliminating the selet overhead is a topi of ative researh and we disuss

it later in this hapter.

4.8 The Serial Eho Benhmark

To explain the results of the serial eho benhmark, it is neessary to extend our previous

performane model. We do this by adding a term to represent the time it takes to proess

the selet all to get:

t

arhiteture dependent

= t

thread reation

+ t

objet inflation

+ t

synhronization

+ t

selet proessing

We measured the selet proessing overhead for the event-driven and the user threads

pakages with a mirobenhmark. The mirobenhmark alled the selet proessing ode

with 49 threads bloked waiting to read serial I/O and 1 thread waiting to read \/dev/zero"

I/O that was ready. We give the overheads in Table 4.2. This gives a total selet proessing

time of 4.46 seonds for the event-driven server and 1.13 seonds for the user-level threads

server. Note that we annot simply time the selet proessing ode for the server benhmark,
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Figure 4-1: Eho and Time Servers

beause the network lateny appears in the amount of time selet bloks for. If we simply

timed the selet proessing ode, we would e�etively ount the network lateny in the

selet proessing overhead. Sine the network lateny is a server arhiteture independent

time and the kernel-level threads do not have a selet all to measure, this is not the orret

approah.

Server Arhiteture Event-Driven User Spae Threads

Selet Proessing 0.891 0.225

Cost (ms)

Table 4.2: Mirobenhmark Results for Selet Evaluation

We present these results in graphial form in Figure 4-4.
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Figure 4-2: Game, Web, Chat, Phone and Quote Servers

4.9 Quantitative Evaluation of the Performane Model

The performane model attempts to split the exeution time of the servers into an arhi-

teture dependent portion and an arhiteture independent portion. For a given server, the

arhiteture independent time should remain onstant aross all arhitetures. A mean-

ingful evaluation of the performane model should numerially express how invariant the

arhiteture independent time is aross the various arhitetures.

The standard deviation of the arhiteture independent times gives a measure of how

lose the arhiteture independent times are. However, this number is tied to the atual

exeution time of the benhmark. To remove this dependene, we an divide the standard

deviation by the average arhiteture independent time for the given benhmark. This

number is alled the oeÆient of variation in statistis.

To help understand whih omponents of the performane model are important for the

benhmarks we ran, we present results for �ve di�erent models ranging from no model to
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Figure 4-3: Serial Eho Benhmark

the selet ompensated model used for the serial eho benhmark.

The no model performane numbers are for a model with an arhiteture dependent

overhead desribed by the equation t

arhiteture dependent

= 0. This model assumes that all

the arhitetures are essentially the same.

The thread reation model performane numbers are for a model desribed by the equa-

tion t

arhiteture dependent

= t

thread reation

. This model assumes that the only signi�ant

di�erene between the arhitetures is in the thread reation time.

The objet ination model performane numbers are for a model desribed by equation

t

arhiteture dependent

= t

thread reation

+ t

objet inflation

. This model assumes that thread

reation and objet ination are the only signi�ant di�erenes in the arhitetures.

The omplete model performane numbers are for a model desribed by the equation

t

arhiteture dependent

= t

thread reation

+ t

objet inflation

+ t

synhronization

. This model assumes

that thread reations, objet inations, and synhronizations are the only signi�ant di�er-
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Figure 4-4: Serial Eho Benhmark with Selet Overheads

enes between the di�erent arhitetures.

The omplete model with selet performane numbers are for a model desribed by

t

arhiteture dependent

= t

thread reation

+t

objet inflation

+t

synhronization

+t

selet proessing

. This

model adds the overhead of selet proessing into the omplete model performane numbers.

We only use this model for the serial eho benhmark.

We present the oeÆients of variation in Table 4.3. The reader may note that inreas-

ing the sophistiation of the model does not always yield better results. This is beause

some overheads are not signi�ant for some benhmarks. For example, the long onnetion

eho benhmark opens its onnetions before the benhmark starts and does very little

synhronization. Adding more details to the model when they are not signi�ant for the

benhmark is unlikely to yield better results. Some of the results shown in Table 4.3 reet

this.

The model works very well for the short eho benhmark, the time benhmark, the hat
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Server No Model Thread Creation Objet Ination Complete Complete

Model Model Model Model w/ selet

Limited Parallelism Eho 0.026 N/A 0.029 0.030 N/A

Long Eho 0.050 N/A 0.052 0.052 N/A

Short Eho 0.370 0.065 0.035 0.028 N/A

Time 0.380 0.091 0.062 0.057 N/A

Chat 0.034 0.033 0.032 0.034 N/A

Quote 0.158 0.157 0.152 0.144 N/A

HTTP 0.107 0.052 0.038 0.032 N/A

Game 0.177 0.176 0.172 0.170 N/A

Phone 0.199 0.095 0.072 0.067 N/A

Serial 0.571 N/A 0.573 0.574 0.268

Table 4.3: Performane Model Evaluation

benhmark, the http benhmark, and the phone benhmark. It works reasonably well for

the game and the quote benhmark. Even after orretions for selet proessing, the model

still works poorly for the serial eho benhmark.

The omplete model predits that the limited parallelism eho benhmark and the long

eho benhmark have little dependene on server arhiteture, and the nearly idential

exeution times aross the various server arhitetures on�rms this.

4.10 Disussion of Results

From our benhmark results, it is lear that no single arhiteture is always better than the

others. However, for various lasses of appliations, some arhitetures have advantages.

For appliations that establish short onnetions suh as web servers or other request and

response based information servers, arhitetures with very small thread reation overheads

are optimal. Event-driven and thread pooled servers appear to be the best hoie due to

their low or non-existent thread reation ost.

For appliations with persistent onnetions that require little synhronization suh as

our long onnetion eho benhmarks, it appears that no server arhiteture has a lear

advantage.

For appliations with persistent onnetions with lots of synhronization, suh as a hat

server, arhitetures with low synhronization overheads are optimal. The event-driven or

user-level thread implementation works best for this lass of appliations.

Appliations with very few ative onnetions do not perform well with arhitetures

that use selet polling. They end up running some very small portion of appliation ode,

they run out of omputation to do, and then run some relatively expensive selet proessing

routines. For this reason, native thread implementations are the best hoie in this lass of
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appliations.

The other important lesson to keep in mind is that the relative importane of various

overheads depends on lient behavior. It is likely that thread reation overheads would

beome muh more important in the hat, quote, and game server if the lients made short

lived onnetions to the servers. And it is reasonable to think that these di�erent onnetion

patterns ould our when people deploy the servers.

We an fault the UNIX operating system for part of the poor performane of the event-

driven servers in ases like the serial eho benhmark. The next setion disusses problems

with operating system support for event-driven servers.

4.11 Operating System Support for Event-driven Servers

UNIX falls short in providing eÆient support for event-driven servers. One problem is

that non-bloking I/O alls may atually blok for �le reads. The AMPED[9℄ arhiteture

attempts to work around this aw.

Another aw is that the only reasonably saleable way for event-driven servers to hek

for events in UNIX is polling selet. The time selet takes to run is proportional to the

number of �le desriptors sanned, and not the number of ready �le desriptors returned.

Some work has been done in providing saleable implementations of selet[7℄. However, the

interfae that selet uses inherently sales poorly[6℄. Banga, Mogul, and Drushel redue

selet/event delivery overhead for a proxy web server from 33.51% of the exeution time to

less than 1% by swithing to an expliit event delivery mehanism. Using an expliit event

delivery mehanisms like the one developed by Banga, Mogul, and Drushel would likely

result in greatly improved performane for the event-driven servers.
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Chapter 5

Conlusion

This projet onsiders an event-driven server arhiteture, a thread-per-onnetion arhite-

ture with kernel-level threads, a thread-per-onnetion arhiteture with user-level threads,

and a thread-pooled server arhiteture. We presented an empirial model for the perfor-

mane of these arhitetures derived from thread reation, synhronization, objet ination,

and selet proessing overheads.

We presented a novel thread-per-onnetion to event-driven transformation utilizing a

modi�ed partial ontinuation passing style onversion in this report and empirially evalu-

ated it. We ompared this server arhiteture to a more traditional thread-per-onnetion

server arhiteture and a thread-pooled server arhiteture.

The event-driven arhiteture very eÆiently handles thread reation and enables the

elimination of synhronization and the orresponding objet ination in many ases. How-

ever, the event-driven transformation introdues a large selet proessing overhead. I/O

patterns that do not allow the server to amortize this ost over many onnetions result in

very poor performane from the event-driven arhiteture. The transformation results in

performane inreases up to a fator of 2 and performanes dereases up to a fator of 3.

The fator of 3 slowdown is partly due to poor operating system support for event-driven

servers. Others do researh on more eÆient I/O primitives for event-driven servers. An

event-driven server using an improved operating system interfae would probably not see

this severe slowdown.

The performane model onsidered in this report is a simplisti model, only aounting

for the di�ering osts of various ations under the di�erent arhitetures. It does not aount
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for seond order e�ets suh as di�erenes due to memory management. But it explains the

benhmarks results quite well.

Further researh remains in expliitly handling ontinuation memory management, ex-

amining di�erent event-driven arhitetures, doing a more omplete performane model,

examining di�erent operating system interfaes, and using SMP ontinuation shedulers.
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