
Data Structure Repair Using Goal-Directed

Reasoning

by

Brian C. Demsky

Submitted to the Electrical Engineering and Computer Science
Department

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Electrical Engineering and Computer Science Department

January 19, 2006

Certified by. .
Martin C. Rinard

Associate Professor in Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Data Structure Repair Using Goal-Directed Reasoning

by

Brian C. Demsky

Submitted to the Electrical Engineering and Computer Science Department
on January 19, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Software errors, hardware faults, and user errors can cause data structures in running
applications to become damaged so that they violate key consistency properties. As
a result of this violation, the application may produce unacceptable results or even
crash.

This dissertation presents a new data structure repair system that accepts a speci-
fication of key data structure consistency constraints, then generates repair algorithms
that dynamically detect and repair violations of these constraints, enabling the ap-
plication to continue to execute productively even in the face of otherwise crippling
errors. We have successfully applied our system to five benchmarks: CTAS, an air
traffic control tool; AbiWord, an open source word processing application; Freeciv, an
online game; a parallel x86 emulator; and a simplified Linux file system. Our experi-
ence using our system indicates that the specifications are relatively easy to develop
once one understands the data structures. Furthermore, for our set of benchmark
applications, our experimental results show that our system can effectively repair
inconsistent data structures and enable the application to continue to operate suc-
cessfully.

Thesis Supervisor: Martin C. Rinard
Title: Associate Professor in Electrical Engineering and Computer Science

2

Acknowledgements
I owe a debt of gratitude to many people, for their assistance and guidance in my

research . First, to my advisor, Martin Rinard, for without his guidance, patience,

encouragement, wisdom, and help this project could not have been done. I would

like to thank the remaining members of my committee, Michael Ernst and Daniel

Jackson, for their time and contributions to this project. I would like to thank the

Fannie and John Hertz Foundation for their fellowship.

I would like to thank Scott Ananian, Patrick Lam, Viktor Kuncak, Darko Marinov,

Maria Cristina Marinescu, Radu Rugina, Alexandru Salcianu, Amy Williams, Karen

Zee, and Mary McDavitt for their support and assistance.

I would like to thank Daniel Roy for his specification checking code and Philip

Guo for his Dwarf2 code that was used to develop the automatic structure extraction

tool.

I would like to thank all of the great friends I have made during my stay at MIT for

making MIT enjoyable. I would like to thank Fuji Lai for being there this entire time.

Finally, I would like to thank my parents and my brother for their moral support.

3

4

Contents

1 Introduction 15

1.1 Specification-Based Data Structure Repair 16

1.2 Experience . 18

1.3 Scope of Data Structure Repair . 19

1.3.1 Acceptability of Repaired Data Structures 20

1.3.2 Target Applications . 20

1.4 Specification Language . 21

1.5 Termination . 23

1.6 Contributions . 24

1.7 Organization . 25

2 Overview 27

2.1 Set and Relation Declarations . 29

2.2 Translating Data Structures into Relations 30

2.2.1 Decoding the Heap . 31

2.2.2 Translating the Decoded Heap into a Relational Model 32

2.3 Specifying Consistency Constraints 35

2.3.1 Classes of Basic Propositions 35

2.3.2 Quantifiers . 37

2.4 Repairing the Model . 37

2.5 Translating Abstract Repairs into Data Structure Updates 39

2.5.1 How Additional Changes to the Model Occur 40

2.6 Termination of the Repair Algorithm 41

5

2.6.1 Repair Dependence Graph . 42

2.6.2 Cascading Changes . 43

2.6.3 Pruning Nodes . 47

2.6.4 Compensation Updates . 47

2.7 Scope . 48

2.8 Summary . 51

3 File System Example 53

3.1 Consistency Specification . 54

3.1.1 Structure Declaration . 54

3.1.2 Model Definition . 57

3.1.3 Consistency Constraints . 59

3.2 Repair Algorithm . 61

3.3 Repair Algorithm Generation . 66

3.4 Repair Dependence Graph . 66

4 The Specification Language 71

4.1 Structure Definition Language . 71

4.2 Model Definition Language . 73

4.2.1 Set and Relation Declarations 73

4.2.2 Model Definition Rules . 74

4.3 Consistency Constraint Language . 75

4.3.1 Treatment of Undefined Values 76

4.3.2 Using Relations as Functions 77

4.3.3 Restrictions on Basic Propositions 78

4.4 Desugaring Set and Relation Declarations 80

4.5 Language Design Rationale . 82

4.5.1 Set- and Relation-Based Model 82

4.5.2 Model Definition Rules . 83

4.5.3 Consistency Consistency Constraints 84

4.6 Discussion . 84

6

5 The Repair Algorithm 87

5.1 Basic Concepts . 87

5.2 Repair Algorithm Overview . 89

5.3 Model Construction . 90

5.3.1 Denotational Semantics . 91

5.3.2 Negation and the Rule Dependence Graph 91

5.3.3 Ensuring a Finite Model . 93

5.3.4 Pointers . 94

5.4 Consistency Checking . 95

5.5 Repairing a Single Constraint . 95

5.5.1 Model Repair Actions . 98

5.5.2 Data Structure Updates . 98

5.5.3 Atomic Modifications . 100

5.5.4 Recursive Data Structures . 101

5.5.5 Compensation Updates . 102

5.5.6 New Objects . 104

6 The Repair Dependence Graph 105

6.1 Nodes in Repair Dependence Graph 106

6.2 Edges in the Graph . 108

6.3 Interference . 112

6.3.1 Model Repair Effects . 112

6.3.2 Data Structure and Compensation Updates 127

6.3.3 Scope Increases and Decreases 130

6.3.4 Computing Upper Bounds on the Sizes of Sets and Relations . 131

6.4 Behavior of the Generated Repair Algorithms 132

6.5 Termination . 133

6.5.1 Individual Model Repairs Terminate 134

6.5.2 Repair Terminates . 135

6.6 Pruning the Repair Dependence Graph 136

7

7 Bounds on the Repair Overhead 141

7.1 Bound on the Number of Repair Actions 141

7.2 Reducing the Repair Overhead . 143

7.2.1 Reducing the Number of Repairs 144

7.2.2 Reducing the Model Building Overhead 144

7.3 Reducing the Checking Overhead . 145

7.3.1 Check On Failure . 145

7.3.2 Partial Specification Checking 145

7.3.3 Incremental Checking . 146

8 Developer Control of Repairs 147

8.1 Developer Control . 147

8.2 Communication with the Developer 149

9 Experience 153

9.1 Methodology . 153

9.2 AbiWord . 154

9.2.1 Specification . 155

9.2.2 Error . 156

9.2.3 Results . 159

9.3 Parallel x86 emulator . 160

9.3.1 Specification . 161

9.3.2 Error . 161

9.3.3 Results . 161

9.4 CTAS . 164

9.4.1 Specification . 165

9.4.2 Fault Injection . 166

9.4.3 Results . 166

9.5 Freeciv . 167

9.5.1 Specification . 167

9.5.2 Fault Injection . 168

8

9.5.3 Results . 172

9.6 A Linux File System . 172

9.6.1 Specifications . 172

9.6.2 Fault Injection . 173

9.6.3 Results . 176

9.7 Randomized Fault Injection . 177

9.7.1 CTAS Results . 177

9.7.2 Freeciv Results . 178

9.8 Comparison with Our Previous System 179

9.9 Discussion . 181

10 Related Work 185

10.1 Rebooting . 185

10.2 Checkpointing . 186

10.3 Transactions . 187

10.4 Manual Data Structure Repair . 188

10.5 Constraint Programming . 189

10.6 Integrity Management in Databases 190

10.7 Data Structure Repair using Search 192

10.8 Specification-Based Data Structure Repair 193

10.9 File Systems . 193

10.10Object Modelling Languages . 194

11 Conclusion 195

11.1 Future Work . 197

11.2 Implications . 199

9

10

List of Figures

2-1 Repair Process . 28

2-2 Example Set and Relation Declarations 30

2-3 Example Structure Definitions . 31

2-4 Example Model Definition Rules . 33

2-5 Example Consistency Constraint . 35

2-6 Repair Dependence Graph . 43

2-7 Repair Dependence Graph with Updates 46

2-8 Pruned Repair Dependence Graph with Updates 48

3-1 Inconsistent File System . 54

3-2 Structure Definitions . 55

3-3 Set and Relation Declarations . 58

3-4 Model Definition Rules . 59

3-5 Consistency Constraints . 60

3-6 Broken Model . 62

3-7 Repair Sequence . 64

3-8 Model with a BlockBitmap . 65

3-9 Repaired Model . 67

3-10 Repair Dependence Graph . 68

3-11 Pruned Repair Dependence Graph . 70

4-1 Structure Definition Language . 73

4-2 Set and Relation Declarations . 74

4-3 Model Definition Language . 75

11

4-4 Consistency Constraint Language . 77

4-5 Three Value Logic Truth Table . 78

5-1 Denotational Semantics for the Model Definition Language 92

5-2 Denotational Semantics for Consistency Constraints 96

6-1 Repair Dependence Graph Schema 106

6-2 Rules for computing interference from set additions 115

6-3 Rules for computing interference from set removals 116

6-4 Rules for computing interference from relation additions 117

6-5 Rules for computing interference from relation additions 118

6-6 Rules for computing interference from relation additions 119

6-7 Rules for computing interference from relation additions 120

6-8 Rules for computing interference from relation removals 121

6-9 Rules for computing interference from relation removals 122

6-10 Rules for computing interference from relation removals 123

6-11 Rules for computing interference from relation removals 124

6-12 Rules for computing interference from relation modifications 125

6-13 Rules for computing interference from relation modifications 126

6-14 Rules for computing interference from model definition rule scope changes131

6-15 Rules for computing interference from model definition rule scope changes139

9-1 Piece Table Data Structure . 155

9-2 Structure Definitions for AbiWord (extracted) 157

9-3 Model Declarations for AbiWord . 158

9-4 Model Definition Rules for AbiWord 158

9-5 Consistency Constraints for AbiWord 158

9-6 Cache Data Structure . 160

9-7 Structure Definitions for x86 Emulator (extracted) 162

9-8 Model Declarations for x86 Emulator 163

9-9 Model Definition Rules for x86 Emulator 163

12

9-10 Consistency Constraints for x86 Emulator 163

9-11 CTAS Data Structure . 165

9-12 Freeciv Data Structure . 168

9-13 Part 1 of the Structure Definitions for Freeciv (extracted) 169

9-14 Part 2 of the Structure Definitions for Freeciv (extracted) 170

9-15 Model Declarations for Freeciv . 171

9-16 Model Definition Rules for Freeciv . 171

9-17 Consistency Constraints for Freeciv 171

9-18 Structure Definitions for File System 173

9-19 Model Declarations for File System 174

9-20 Model Definition Rules for File System 175

9-21 Consistency Constraints for File System 175

9-22 Results of Randomized Fault Injection for CTAS 178

9-23 Results of Randomized Fault Injection for Freeciv 179

13

14

Chapter 1

Introduction

Applications often make assumptions about the states of the data structures that

they manipulate. Errors that cause these data structures to become inconsistent and

violate these assumptions may cause software systems to behave unacceptably or even

fail catastrophically. A common recovery strategy for data structure inconsistencies is

to reboot the system, thereby eliminating the inconsistencies when the system rebuilds

the data structures from scratch. However, this strategy may fail: if inconsistencies

appear in persistent data structures or are triggered by recurring problematic inputs,

then the system may continue to be completely inoperable, even after rebooting.

Motivated in part by the drawbacks of rebooting, researchers have developed hand-

coded data structure repair techniques to address data structure corruption errors.

Several very successful deployed systems use data structure inconsistency detection

and repair techniques to improve reliability in the face of errors. For example, the

Lucent 5ESS switch and IBM MVS operating systems both use hand-coded audit

and repair procedures to recover from data structure corruption errors [21, 29]. The

reported results indicate an order of magnitude increase in the reliability of these

systems [18]. Similar repair procedures exist for persistent data structures such as

file systems and application files [5, 3].

While hand-coded repair algorithms are a useful way to enable software systems

to recover from data structure corruption events, they are difficult to implement,

as the developer must reason about the operational details of the repair process to

15

obtain a correct repair algorithm. Because of the context in which they are used,

repair algorithms also present additional challenges that are not present in standard

software:

• One challenge is that repair algorithms must repair completely unconstrained

data structures. For example, software errors, hardware errors, or user errors

can leave data structures in arbitrary states. This can be difficult for the de-

veloper, as he or she must write code that traverses, checks, and repairs a

data structure while making absolutely no assumptions about the state of that

data structure. For example, code to process a broken linked list must check

for invalid pointers, cycles in the linked list, sharing between linked lists, and

overlapping linked list elements in addition to implementation-specific errors.

• A second challenge is that it is difficult to test repair algorithms. In particular,

testing is complicated by the following issues: 1) testing must ensure that the

repair algorithm functions on completely unconstrained inputs, and 2) there are

many ways the data structure can be broken. In particular, the testing process

must ensure that the repair algorithms: 1) terminate for all possible input data

structures, 2) do not crash on any input data structures, and 3) successfully

repair any damaged data structures.

1.1 Specification-Based Data Structure Repair

To address these challenges, we have developed a specification-based approach to data

structure repair. This dissertation presents our specification-based data structure

repair technique and our experience using this technique to enable systems to recover

from data structure corruption.

Instead of manually developing ad-hoc procedures to repair inconsistent data

structures, our technique allows the developer to write a declarative specification

of the data structure consistency properties and annotate the application to indicate

where these specifications should hold. When possible, our specification compiler

16

then compiles this specification into C code that checks that the consistency proper-

ties hold. When the user runs the application, the application invokes the generated

repair algorithm at the developer annotated points. When invoked, the repair algo-

rithm checks for constraint violations, repairs any violations that it finds, and finally

returns control to the application.

This specification-based approach has the following key advantages:

• It enables the developer to focus on the consistency constraints rather than

on the low-level operational details of developing algorithms that detect and

correct violations of these constraints. Because of the declarative nature of the

constraints and the enormous number of operational details the developer must

take into account when developing repair algorithms by hand, we believe that it

is easier for developer to specify constraints than to develop repair algorithms

by hand.

• The highly-defensive and unnatural programming style necessary to access arbi-

trarily broken data structures can be automatically generated by the compiler.

Since the specification compiler automatically generates the traversals it can

systematically insert the necessary checks at every access.

• The specification compiler is likely to be more rigorously tested than any given

hand-coded repair algorithm because it will be used to generate repair algo-

rithms for many different applications. The repair algorithms generated by the

specification compiler are therefore more likely to be correct (and therefore more

likely to correctly repair any inconsistent data structures) than hand-coded re-

pair algorithms.

• The specification compiler automatically reasons about interactions between re-

pair actions and consistency properties to ensure that the repaired data struc-

ture correctly satisfies all of the consistency properties specified by the devel-

oper. Compared with hand-coded repair algorithms, the specification compiler

automatically reasons about the interactions between repair actions and consis-

tency properties. To write repair algorithms, the developer must reason about

17

all possible interactions between the repair actions and the consistency proper-

ties the code enforces. If the developer of a hand-coded repair algorithm forgets

to account for an interaction, the hand-coded repair algorithm could fail to

terminate or not repair some violated consistency property.

• The generated repair algorithm is guaranteed to terminate.

Because of all of these reasons, we expect our specification-based approach to

substantially simplify the process of developing repair algorithms. One beneficial

result of this simplification is that developers may be able to successfully incorporate

data structure repair into a larger body of software systems.

1.2 Experience

Our data structure repair technique produces data structures that satisfy the consis-

tency properties. While these repaired data structures are not guaranteed to be the

same data structures that a correct execution would have produced, they are heuris-

tically close to the original broken data structures. While in practice this may enable

applications to continue to execute successfully, it does not ensure any properties

about the continued execution of the application. Furthermore, whether a repaired

execution is acceptable to the user is a subjective question that can only be evalu-

ated by considering the deviation from correct behavior and the context in which the

application is intended to be used. As a result, we believe that the most reasonable

way to evaluate whether data structure repair enables applications to recover from

otherwise serious or even fatal errors is to perform an empirical evaluation. A key

question that our evaluation focuses on is whether data structure repair, when given a

specification that detects an inconsistency, effectively enables applications to recover

from that inconsistency in an acceptable manner.

To perform this evaluation, we first developed a compiler-based implementation

of our data structure repair technique. This implementation compiles data structure

consistency specifications into C code that implements a repair algorithm for the data

18

structure.

We then acquired five different applications and applied our technique to each.

The five applications were: a word processor, a parallel x86 emulator, an air-traffic

control system, a Linux file system, and an interactive game. For each of the ap-

plications we developed a workload that exercised the application and identified a

pre-existing error or injected a fault to corrupt a data structure. We then wrote

a specification that was targeted towards the particular constraint. Without data

structure repair, the corrupted data structures caused each of the applications to

crash. With data structure repair, the corruption was repaired and the applications

were able to continue to execute successfully. In some cases, data structure repair

leveraged the presence of redundant information to produce a completely correct data

structure. In other cases, the repair produced data structures that potentially devi-

ated from the correct data structure. Nevertheless, these repaired data structures

satisfied the basic data structure consistency constraints and enabled the application

to continue to execute acceptably.

To incorporate data structure repair in these applications, we had to write data

structure specifications for each application. To simplify the evaluation, we first found

a software error, then wrote the data structure consistency specification to cover the

properties violated by the selected error. In this evaluation, we found that the specifi-

cations were relatively to easy to develop once we understood the consistency proper-

ties for the data structure and that most of the time we spent developing specifications

was spent understanding the consistency properties of the data structures. Our eval-

uations leaves open the question of how hard it is to obtain comprehensive enough

specifications to repair previously unknown errors and to ensure that repairs of one

constraint do not violate other important but unstated consistency constraints..

1.3 Scope of Data Structure Repair

We do not expect that specification-based data structure repair will be suitable for all

applications. The scope of data structure repair is limited by the acceptability of the

19

repaired data structures for each application in the context in which it is used and

whether the application has properties that make data structure repair attractive.

1.3.1 Acceptability of Repaired Data Structures

A significant issue is that data structure repair does not necessarily generate the

same data structure that a correct execution would have. As a result, the continued

execution of the application after repair may diverge significantly from the correct

execution and even produce unacceptable results. Our results, however, indicate

that repairing the inconsistencies in the data structures almost always enables our

applications to execute in an manner that we believe the user will find acceptable.

Moreover, for these applications continued acceptable execution is more desirable than

crashing and losing all of their volatile state. However, we recognize that there are

applications where absolute correctness is more important than continued execution,

and data structure repair is not appropriate for these applications. Examples of

such computations include cryptography algorithms (which cannot tolerate even the

slightest deviation from correct behavior) and many numerical calculations (for which

confidence in accuracy of the output value is important and small deviations in the

calculations can produce large differences in the output).

1.3.2 Target Applications

Our target applications have several properties that make data structure repair at-

tractive:

• Rebooting Ineffective: There must be some reason why a user would not

just reboot these applications to recover from inconsistencies. Some reasons

that a user may wish to not simply reboot an application include: the applica-

tion maintains persistent data that may become corrupt (such inconsistencies

persist across reboots and may cause the rebooted system to crash), the system

has important information in volatile data structures, the system may take too

long to boot, the boot process may be complicated and involve human inter-

20

vention, or recurring problematic inputs may cause the system to repeatedly

crash. Applications that maintain persistent data structures are particularly

good candidates for data structure repair, because inconsistencies in these per-

sistent data structures cannot be fixed by rebooting these applications.

• Well-specified Data Structures: The application should have well-specified

data structures with important consistency properties. It can be difficult to

write a useful consistency specification if the consistency properties are not

known, if all of the possible data structure configurations are consistent, or if

the consistency properties relate local variables in different naming contexts.

• Tolerates Deviations from Complete Correctness: The application must

tolerate some deviation from complete correctness. Several different factors

can help applications tolerate deviations from completeness correctness: 1) the

application may have many decoupled subcomputations, some of which are not

affected by the deviation; 2) the application may contain many independent

objects only some of which are affected by the inconsistency and, therefore,

the application is able to correctly process the correct objects; 3) the user may

be able to tolerate large deviations from correct behavior; 4) the application

may flush incorrect state and, therefore, eventually return to completely correct

behavior; and 5) the consistency properties may be sufficient to ensure that the

future behavior of the application is acceptable.

• Application’s Uptime is Important: There must be a reason why the devel-

opers care enough about the application’s uptime to apply data structure repair.

This can either be that the application is important and/or widely deployed.

1.4 Specification Language

Our specification language uses a set- and relation-based abstract model of data

structures. This model consists of sets of objects and relations between these objects.

The developer writes consistency constraints in terms of these sets and relations.

21

Many of the objects in an application’s data structures have identical consistency

properties. For example, all of the nodes in a linked list should be pointed to by at

most one other object in the list. We included sets in our abstract model because

they provide a natural way to group together all of these objects so that the developer

can then write a consistency property that holds for all objects in the set. The fields

in objects associate the object with primitive values or other objects. Other data

structures such as a hashtable can also associate an object with primitive values or

other objects. We included relations in our abstract model because they provide a

natural way to abstract both of these associations.

As we previously discussed, it is often useful to write constraints that must be

true for all objects in a set. We have included guarded universal quantifiers to enable

the developer to write a constraint that holds for all objects in a set or all tuples in

a relation. Our specification language includes a set of basic propositions, which can

be combined by standard logical connectives (or, and, negation). We chose the set of

basic propositions so that they were easy to repair, and that they could express impor-

tant consistency properties. These basic propositions include numerical inequalities

(for example, a lower bound on an object’s fields), pointer equalities (for example,

constraints that ensure that back-pointers in a doubly-linked list are consistent with

the forward pointers), set and relation inclusion constraints (for example, constraints

that relate set membership to other properties), constraints on the sizes of sets (for

example, constraints that ensure that data structures exist), and constraints on the

in-degree and out-degree of relations with respect to a given object (for example,

constraints that ensure that an object in a linked-list is referenced at most once by

other objects in the list).

A key challenge in this approach is constructing the sets and relations in the

abstract model from the concrete data structures. Our specifications include a set

of developer-provided model definition rules, which the developer uses to specify the

connection between the concrete data structures and the abstract model. The repair

algorithm then uses these model definition rules to construct an abstract model of

the concrete data structure.

22

We generate repair algorithms that use the model definition rules to traverse the

concrete data structures in the heap to classify objects into sets and to construct

the relations. The repair algorithm then checks that the consistency properties hold

on the abstract model. If it finds a constraint violation, it selects a conjunction in

the disjunctive normal form (DNF) of the constraint to make true. Note that if the

selected conjunction in the constraint is true, the entire constraint is true. The repair

algorithm then makes the conjunction true by performing model repairs to make each

of the individual basic propositions that comprise the conjunction true. These model

repairs make the basic propositions true by either adding or removing objects (or

tuples) to or from sets (or relations). At this point the repair algorithm has repaired

the abstract model, but it has not yet repaired the underlying data structure. The

repair algorithm next uses goal-directed reasoning to analyze the model definition

rules to translate these model repairs into data structure updates. After performing

the concrete data structure update, the algorithm has repaired a single constraint

violation in the underlying data structure. However, multiple constraints may be

violated, so the the repair algorithm repeats the process until it finds no further

violations. The end result of the repair process is that all of constraints hold on the

repaired data structure.

1.5 Termination

In general, it is possible for a repair algorithm to become trapped in an infinite repair

loop. This can happen, for example, if the repair algorithm repairs one constraint

and in the process violates a second constraint, then repairs the second constraint and

in the process violates the original constraint. The specification compiler determines

if this kind of non-termination can happen by building the repair dependence graph,

which tracks all of the possible dependences between repair actions. The absence

of certain kinds of cycles in the repair dependence graph guarantees that the repair

algorithm will always terminate. Even if this graph contains one or more of these

cycles, the algorithm may in some cases be able to prune sets of nodes to eliminate

23

these cycles. This pruning corresponds to eliminating potential repair actions that the

repair algorithm could otherwise use. Before the specification compiler generates the

repair algorithm, it checks for the absence of any such cycles in the repair dependence

graph. The generated repair algorithm will therefore always terminate and leave the

data structure in a consistent state.

1.6 Contributions

This dissertation makes the following contributions:

• Specification-Based Data Structure Repair: It presents a specification-

based approach to data structure repair. The developer simply writes the key

consistency properties, and our tool automatically generates the corresponding

data structure repair algorithm. This approach allows the developer to focus

on the consistency properties and frees the developer from reasoning about the

operational details of the repair algorithms.

• Abstract Model: Our approach is based on a set- and relation-based abstract

model of the data structure. The developer uses this abstraction of the data

structure to express key data structure consistency properties.

• Specification language suitable for repair: It presents a specification lan-

guage that can express many data structure consistency properties and that

can be used to automatically generate data structure repair algorithms. This

specification language also specifies how to construct the set- and relation-based

abstraction of the concrete data structures.

• Model Construction: It presents how the repair algorithm evaluates the

model definition rules to construct a set- and relation-based abstract model of

a concrete data structure.

• Consistency Checking and Repair: It presents how our repair algorithm

checks the consistency properties on the abstract model and repairs any violated

24

constraints that it finds.

• Repair Translation: A key challenge with this approach is translating the

repair actions from this abstraction into operations that update the concrete

data structures. This dissertation presents an algorithm that uses goal-directed

reasoning to translate repair actions into operations that update the concrete

data structures.

• Termination Analysis: It presents a conservative analysis that determines

whether the generated repair algorithm terminates. This analysis reasons about

the interactions between the consistency constraints, the repair actions for these

constraints, and the model definition rules to ensure that the generated repair

algorithm always terminates.

• Experience: It presents our experience using data structure repair on several

applications. We have used data structure repair to successfully enable five ap-

plications to recover from otherwise fatal data structure consistency corruption.

At this point we have completed an initial investigation of our technique and

obtained positive results. However, several questions remain unanswered. How hard

is it to obtain specifications that have good coverage of the properties that software

errors will violate? How well will data structure repair work on a broader class of

applications with (presumably) a broader class of errors? The next step would be

to perform an evaluation in which we first develop a consistency specifications for a

broader class of applications, find errors in the applications, and finally test whether

the repair algorithm enables the applications to acceptably recover from these errors.

1.7 Organization

The remainder of the dissertation is organized as follows. Chapter 2 presents an

overview of the repair technique. Chapter 3 presents a file system example. Chap-

ter 4 presents the specification language in detail. Chapter 5 presents the general

25

repair strategy the generated repair algorithms utilize. Chapter 6 presents the repair

dependence graph and describes how the algorithm uses this graph to ensure that the

generated repair algorithms terminate. Chapter 7 presents a method for computing

upper bounds on the time taken by a generated repair algorithm. Chapter 8 presents

the mechanisms that the developer can use to control the generated repair algorithms.

Chapter 9 presents our experience applying data structure repair to five benchmark

applications. Chapter 10 presents related work. Chapter 11 presents our conclusions.

26

Chapter 2

Overview

Our repair algorithm starts by building an abstract relational model of the system’s

data structures. This abstract relational model is composed of sets of objects and

relations between these objects. After the model is constructed, the repair algorithm

checks the model consistency constraints on the abstract model. If the checking

algorithm finds a violated consistency constraint, it begins the repair process. We

implement the repair process as a sequence of insertions and removals of tuples from

this relational model. Note that it is possible to perform any desired change to the

model using a sequence of insertions and removals of tuples. A key issue with this

approach is translating repairs made to the relational model back into changes to the

bits. Our approach uses goal-directed reasoning to translate the repair actions for the

abstract model into updates to the concrete data structures.

Figure 2-1 presents a graphical overview of the repair process. The boxes at the

bottom of the figure represent the bits in the heap, and the rounded boxes at the top

of the figure represent the relational model. The repair process performs the following

steps:

1. Structure Decoding: This step in the repair process decodes the bit patterns

in memory into objects. The developer specifies the layout of the objects using

our structure definition language.

2. Constructing Relational Model: This step of the repair process finds the

27

Figure 2-1: Repair Process

objects, places the objects into the appropriate sets, and constructs the relations

in the model. It constructs the sets and relations by starting from a set of roots

and tracing out the pointers in the heap. A set of model definition rules tells

the repair algorithm how to classify the objects and construct the relations.

3. Checking Properties: This step checks for inconsistencies in the abstract

model. The developer expresses the data structure consistency properties as a

set of consistency constraints. Each constraint is a boolean combination of basic

propositions involving the sets and relations in the model. This step evaluates

each of these consistency constraints on the relational model.

4. Perform Model Repair: This step repairs any inconsistencies that the repair

algorithm discovered in the previous step. To generate a repair for a violated

constraint, the repair algorithm rewrites the constraint in disjunctive normal

form (DNF), chooses one of the conjunctions in the DNF form of the constraint,

and then applies model repairs as appropriate to make each of the individual

basic propositions in the selected conjunction true. The repair algorithm im-

plements these model repairs using a sequence of operations that either add or

28

remove objects (or tuples) to or from sets (or relations).

5. Translating the Model Repairs: This step translates the model repairs into

data structure updates. As mentioned above, the repair algorithm uses a se-

quence of operations that either add or remove an object (or tuple) to or from

a set (or relation) to implement each repair. To implement such a repair, the

repair algorithm finds the model definition rules that construct a given set or

relation, then manipulates the data structures to cause these model definition

rules to either add or remove the object (or tuple) to or from the set (or rela-

tion). While we could generate data structure updates dynamically, our system

statically pre-computes all possible model repairs and then for each possible

model repair generates code that, when invoked, performs the corresponding

data structure update. The repair algorithm then implements the data struc-

ture update by invoking the correct piece of pre-generated code.

6. Repeat the Process: The process discussed above repairs a single violation.

To repair all of the constraint violations, the repair algorithm repeats the process

until all of the constraints hold.

We next discuss each of the components of the repair algorithm in more detail.

2.1 Set and Relation Declarations

The developer writes set and relation declarations to declare the sets and relations

that comprise the abstract relational model. A set declaration declares the name of

the set and the type of objects or primitive values that this set contains. The set

declaration can also declare that a set is a subset of another set, or that a set is

partitioned into other sets. A relation declaration declares the name of the relation

and relation’s domain and range. The domain and range can be declared as either a

set, a type of object, or a type of primitive value.

Figure 2-2 presents set and relation declarations for an example. The first line of

this figure declares the set AllInts to contain objects of the type IntObj. Note that

29

set AllInts of IntObj

set NonNegInts of IntObj

set IntValues of integers

Figure 2-2: Example Set and Relation Declarations

Figure 2-3 in Section 2.2.1 presents the definition for the IntObj type. The second

line declares the set NonNegInts to contain objects of the type IntObj. The final

line declares the set IntValues to contain primitive integer values. Many objects in

the computation may have the same consistency properties. For example, all of the

nodes in a linked list usually have the same consistency properties. We expect that

developers will typically use sets to group together all objects that have the same

consistency properties.

We expect that developers will use relations to model the values of fields and

referencing relationships. For example, a developer might use a set to store the nodes

in a linked list and a relation to model the fields that link the nodes together.

2.2 Translating Data Structures into Relations

The first step in the repair process translates the concrete data structures into the

sets of objects and relations in the relational model. Sets contain either objects or

primitive values depending on the declared type of the set. Conceptually, there are

two different types of relations in the model: relations that model object fields that

store primitive values, and relations that model the referencing relationships between

objects. Relations that model array indexes are an interesting special case; while the

underlying field stores a primitive value, the relation may relate the location of the

index to the indexed element in the array.

Our approach to translating data structures into relations has two major com-

ponents: decoding the bits in the heap into objects and tracing out the referencing

relationships between these objects to construct the sets and relations in the relational

model.

30

2.2.1 Decoding the Heap

Applications represent their data structures as a string of bits in memory. The first

step of the repair process decodes this string of bits into objects with fields. The

repair system could use C structure declarations for this step, but this approach

has some limitations. Instead, we have developed a structure definition language

based on C structure declarations with extensions added to address the limitations.

The first limitation is that C structure definitions do not support dynamically sized

arrays. We have developed an extension that allows the sizes of these arrays to be

computed from integer values stored in the decoded fields of data structures. The

second limitation is that C structure declarations do not support packed arrays of

bits. We have developed an extension to support packed arrays of bits. Finally, C

structure declarations do not support inheritance. We have developed extensions to

support two types of inheritance: structural inheritance and extensional inheritance.

Structural inheritance allows a developer to define types that leave a region in the data

structure undefined, and then incrementally refine part of that region in that type

in a second type definition that declares fields in these undefined parts. Extensional

inheritance allows the developer to define a type that adds fields to a previous type

definition.

structure Obj {

}

structure IntObj subclass of Obj {

int value;

}

IntObj *ptr;

Figure 2-3: Example Structure Definitions

Figure 2-3 presents the structure definitions for the example. The first structure

definition declares the type Obj to contain no fields. The second structure definition

declares that the type IntObj extensionally inherits from the type Obj and adds the

primitive integer field value. The last line of this figure declares that the application

31

has a variable ptr that references a IntObj object.

2.2.2 Translating the Decoded Heap into a Relational Model

After decoding the bits in the heap, the repair algorithm finds and classifies objects

and constructs relations from the information stored in the fields of objects. The

basic strategy is to construct the sets and relations by starting from a set of roots to

trace out the pointers in the heap. The repair algorithm classifies objects into sets

based on both the path taken through the heap to reach the object and the contents

of the objects.

Our repair algorithms use a set of developer-provided model definition rules to

trace out the referencing relationships in data structures to find and classify objects.

Each model definition rule has the following components in order:

• Optional quantifiers over sets and/or relations

• A guard that tests a condition on the concrete data structure and/or the ab-

stract model

• A right arrow that separates the guard from the inclusion condition

• An inclusion condition that specifies an object (or tuple) to add to a set (or

relation) if the guard is true.

To trace out the pointers in a recursive data structure, a developer would typically

use a pair of model definition rules: one rule handles the base case and the other

handles the recursive case. The base case model definition rule adds the root of the

data structure to a set. The recursive case model definition rule then quantifies over

this set, checks if a developer-specified pointer in the quantified object is non-null,

and if so adds the pointer’s value to the set. We designed the model definition rules to

be both easy to analyze for common usage patterns yet powerful enough to support

sophisticated translations.

Figure 2-4 presents the model definition rules for the example. The first model

definition rule checks to see if ptr is non-null, and if so, adds the object referenced

32

1. ptr != null => ptr in AllInts

2. (ptr != null) and (ptr.value >= 0) => ptr in NonNegInts

3. for n in AllInts, true => n.value in IntValues

Figure 2-4: Example Model Definition Rules

by ptr to the AllInts set. The second model definition rule checks to see if ptr is

non-null and if ptr.value is greater than or equal to zero, and if so, adds the object

referenced by ptr to the NonNegInts set. Notice that the first two model definition

rules do not have quantifiers as they operate directly on a pointer in the root set.

The final model definition rule quantifies over all objects in the AllInts set and adds

the contents of the value field of these objects to the IntValues set. Since the third

model definition rule does not need to test any conditions, we have used true as the

guard.

Ensuring Termination of Model Construction Sometimes it is useful to con-

struct a set of objects that do not satisfy some property. For example, a developer

may define an active set of objects that participate in a given data structure, and

then use negation to specify a free set that contains objects that are not in the

active set. Negation complicates model construction because it may introduce a non-

monotonicity into the fixed point computation that constructs the relational model.

Consider the model definition rules !o in S => o in S’ and true=>o in S. The

issue with negation is that the first model definition rule may initially place the ob-

ject referenced by o in S’ because o is not in S. If a second model definition rule

then adds o to S, this causes the guard of the first model definition rule to become

false even though the this rule has already added o to S’. Note that if the model

construction algorithm had evaluated the rules in the opposite order, the algorithm

would only add o to S. Notice that there are two solutions. The model construction

algorithm generated the second solution because it evaluated a negated inclusion con-

straint on a partially constructed and therefore added o to S’. The problem is that

it is possible that only one of these models satisfies the consistency constraints, and

33

therefore whether a data structure is consistent may depend on the order in which

the model definition rules is evaluated. Our algorithm eliminates the other solutions

by ordering the evaluation of the model definition rules to ensure that the model con-

struction algorithm completely constructs all of a model definition rule’s negated set

and relation dependences before evaluating the model definition rule. In the example,

this ordering would ensure that the second model definition rule was evaluated before

the first model definition rule.

Consider the model definition rule !o in S => o in S. This model definition

rule has a negated dependence on the set it constructs, and therefore the model

construction algorithm cannot completely construct S before evaluating the rule. To

address this issue, we restrict negation to be used only when a model definition rule’s

negated predicate does not depend directly on the set or relation constructed by

that model definition rule or indirectly on this set or relation through the actions

of other model definition rules. In the current example, this restriction disallows

the model definition rule !o in S => o in S. In general, this restriction allows the

model construction algorithm to completely construct all of a model definition rule’s

negated set and relation dependences before evaluating the model definition rule.

Our repair algorithm also supports the creation of sets or relations that contain

primitive values. The primary issue with supporting primitive values is the possibility

of constructing an infinite model. For example, a model definition rule could state

that the successor of every integer in a set is also in the set. To address this issue,

our repair algorithm places limitations on the synthesis of new primitive values in

the inclusion condition of model definition rules that quantify over a set or relation

that may grow larger as a result of the action of this model definition rule. These

restrictions serve to ensure that the generated model is finite.

Ensuring Basic Representation Consistency The model construction process

ensures the basic representation consistency of the data structures as follows. It

ensures that data structure references point to allocated memory. If it discovers a

pointer to unallocated memory, it writes a zero value to that pointer. It also ensures

34

that objects do not illegally overlap with other objects. If the repair algorithm finds

illegally overlapping objects, it writes a zero value over the reference to one of these

objects. Finally, the developer can write model definition rule guards that ensure

that the model construction step does not place illegal values in sets or relations.

2.3 Specifying Consistency Constraints

Once the repair algorithm constructs the abstract model, it needs to know what

constraints the model should satisfy. The developer expresses consistency constraints

in terms of the sets of objects and relations in the model.

1. size(AllInts)=1

2. size(NonNegInts)=0

Figure 2-5: Example Consistency Constraint

Figure 2-5 presents the consistency constraint for the example. This example con-

tains two consistency constraints. The first set size constraint 1. size(AllInts)=1

ensures that the AllInts set contains exactly one object. The effect of this con-

straint is to ensure that the ptr variable always points to an IntObj object. The

second set size constraint 2. size(NonNegInts)=0 ensures that the NonNegInts set

is empty. The effect of this constraint is to ensure that the ptr variable only points

to an IntObj object that stores a negative integer value.

2.3.1 Classes of Basic Propositions

Our repair system supports boolean combinations of the following classes of basic

propositions:

• Numerical Inequalities: Developers often use relations to model the values

of a data structure field or variable. Numerical inequality basic propositions

allow the developer to express numerical inequalities over the primitive field

values that these relations model. An example numerical inequality is x.R>1.

35

• Pointer Equalities: These basic propositions express pointer equalities. De-

velopers typically use these constraints to ensure local topological constraints,

such as consistency between forward and backward pointers. An example

pointer inequality is n.Next.Prev=n. The Next and Prev relations in this ex-

ample are used to model the next and prev fields in a double linked list.

• Set Size Constraints: These basic propositions express constraints on the

sizes of sets. In general, developers use these constraints to ensure that data

structures exist. The previous example contains the constraint size(AllInts)=1,

which ensures that the AllInts set contains exactly one IntObj object. This

constraint ensures that the IntObj object pointed to by the ptr variable exists.

• Topology Constraints: These basic propositions express constraints on how

many objects a relation (or its inverse) maps a given object to or from. Devel-

opers typically use these constraints to express local topological properties of

the heap — specifically what the in-degree or out-degree of a given object is.

For example, the topology constraint size(n.∼Next)<=1 ensures that a node

in a linked list is referenced at most once by the next field of another node in

the linked list.

• Inclusion Constraints: These basic propositions express constraints on whether

an object (or tuple) is in a set (or relation). An example of an inclusion con-

straint is n in Nodes. This constraint ensures that n is a member of the set

Nodes. These propositions are useful for relating an object’s membership in a

set to some other condition (perhaps whether a flag is set in the object).

We chose this set of basic propositions because we could express many interesting

data structure properties using them and it was easy to generate repair actions for

the individual basic propositions.

36

2.3.2 Quantifiers

Our consistency constraint language supports guarded universal quantifiers over sets

and relations. Quantifiers allow developers to write consistency constraints that apply

to all objects in a set or to all tuples in a relation. We have restricted the form of the

quantifiers to simplify the repair algorithm. In particular, we only allow guarded uni-

versal quantifiers to appear to the left of the body of the constraint, and we disallow

existential quantifiers. These restrictions simplify the evaluation and the repair of the

constraint, as the repair algorithm does not need to perform a search to find the ap-

propriate quantifier binding. One drawback of this restriction is that disallowing exis-

tential quantifiers complicates the expression of properties about incoming reference

to an object. For example, the formula for n in Nodes, n in Root or exists

parent in Tree, parent.left=n or parent.right=n specifies that all nodes (ex-

cept the root node) in the tree have a parent. We address this issue by supporting

the inverse operation on relations. The developer can use relation inverses to express

constraints about the existence of an incoming reference to an object. For example,

we can rewrite the previous constraint using relation inverses as for n in Nodes, n

in Root or size(n. Left)>=1 or size(n. Right)>=1.

The existential quantifier can also specify that at least one element in a set satisfies

a given property. For example, the constraint exists tail in List,

size(tail.Next)=0 ensures that a list has a tail node that doesn’t reference any

other nodes. While this type of property cannot be specified in our model construction

language, the developer can write a model definition rule to place the tail of a linked

list in its own set, and the developer can specify that this set contains one element.

2.4 Repairing the Model

Consider the first constraint size(AllInts)=1 from the example. If the variable ptr

was null, the model construction step would construct an empty AllInts set, and the

consistency checking step would detect a violation of the constraint size(AllInts)=1.

The repair algorithm would generate a model repair that creates a IntObj object and

37

adds this object to the AllInts set.

The goal is to generate a sequence of operations that add or remove objects (or

tuples) to or from sets (or relations). Our repair algorithm constructs this sequence

of repair actions as follows. It repairs a constraint by choosing a conjunction in the

disjunctive normal form (DNF) of a constraint and performs individual repair actions

to the basic propositions in the conjunction making that conjunction true.1 Note

that making any conjunction in the DNF form of a constraint true makes the entire

constraint true. Our repair algorithm locally selects a conjunction to make true,

using a cost function to guide the selection of the conjunction. This function assigns

costs for making each of the basic propositions true. While this cost mechanism was

originally designed to guide the operation of the repair algorithm to select repairs

that minimally change the data structure, we have extended it to allow developers

to specify preferences for certain repair actions. When repairing a constraint, the

repair evaluates the total cost of the repair actions that each conjunction choice

will require and then chooses the conjunction with the smallest cost to repair. This

greedy algorithm enables us to avoid search during repairs, but comes at the cost of

potentially performing lower quality repairs. This could be alleviated by combining

our current technique with a bounded search to select repair actions.

One limitation of this repair strategy is that it only considers a single basic propo-

sition when generating a repair action. We chose this design to simplify the repair

algorithm. However, this simplicity comes at a cost: our repair algorithm is unable to

generate repair actions that satisfy multiple constraints at once. One example of such

a specification is a system of linear equations. A successful repair strategy for linear

equations needs to coordinate updates to multiple equations when generating repair

actions. Our system would only generate repair actions for individual equations; such

actions would violate other equations in such a specification. As a consequence, our

specification compiler would fail to generate a repair algorithm for such a specification,

1The disjunctive normal form of a constraint is a normal form where the constraint is expressed as
a disjunction (or operation) of conjunctions (and operation) of the basic properties in the constraint
language.

38

since our repair algorithm generation process would only generate repair algorithms

that may fail to terminate in some cases.

2.5 Translating Abstract Repairs into Data Struc-

ture Updates

The final component of the repair process translates the abstract repairs into updates

to the concrete data structures. For example, to translate a model repair that adds

an object to a set, the repair algorithm finds the model definition rules that construct

the given set, and selects one of these model definition rules to add the object to the

set. The goal at this point is to make the guard of the model definition rule true in

such a way that the model definition rule adds the object to the set. Guards of model

definition rules are composed of boolean combinations of predicates that test either

the concrete data structure or the abstract model. The repair algorithm uses the same

technique to satisfy the guard as it used to satisfy a model consistency constraint

except that it manipulates the concrete data structure in this case - specifically, it

converts the guard in the constraint to disjunctive normal form, selects a conjunction

to satisfy, and then performs a series of updates to the concrete data structure to

satisfy that conjunction. In general, our algorithm finds the model definition rules

whose inclusion condition (right hand side) constructs the relevant set or relation, and

then manipulates the guard (left hand side) of the model definition rule to achieve

the desired action. Note that the inclusion condition of a model definition rule can

have only one of two forms: either it specifies an object to add to a set or it specifies

a tuple to add to a relation.

In some cases, the expressions in the inclusion condition of the model definition

rule may not evaluate to the object or tuple that the model repair adds to the set

or relation. In this case, the repair algorithm may also manipulate the fields in the

expressions that appear in the inclusion condition of the model definition rule to make

the expression equal to the object (or tuple) that the model repairs adds to the set

39

(or relation). Specifically, it sets the last field in the expression equal to the object

or primitive value to be added to the set or relation. Note that if the last field is

an array and the object (or half of the tuple) to be added to the set (or relation)

is also from the same array, then the repair algorithm sets the index into the array

to the equal to the index of the object to be added. Finally, it is possible that the

sets that the model definition rule quantifies over do not contain the object that the

corresponding quantified variable is bound to. In this case, the repair algorithm may

also need to add or remove objects (or tuples) to or from the sets (or relations) that

appear in the quantifiers of the model definition rule.

To remove an object from a set, the repair algorithm generates updates that falsify

the guards of all the model definition rules that may have added the object to the set.

The repair algorithm may also remove objects (or tuples) from the sets (or relations)

that the model definition rule quantifies over to prevent that model definition rule

from adding an object to a set. If the repair algorithm needs to add or remove tuples,

it uses a similar strategy.

2.5.1 How Additional Changes to the Model Occur

It is unfortunately possible that a given data structure update may change the model

in additional ways that go beyond the desired change. We identify two mechanisms

for these additional changes: changes that the data structure update performs to the

data structures can cause model definition rules to add or remove objects (or tuples)

to or from sets (or relations) and changes that the data structure update causes to

the abstract model can cause model definition rules to add or remove objects (or

tuples) to or from sets (or relations). We next examine the example to understand

why this may happen. Consider a model repair that adds a new IntObj object to the

AllInts set. The repair algorithm would translate this model repair into a concrete

data structure update that sets the variable ptr to point to the newly allocated

IntObj object. If the value field of the newly allocated IntObj object happens to be

non-negative, this update would also satisfy the guard of the second model definition

rule shown in Figure 2-4. Therefore, the data structure update may cause the newly

40

allocated IntObj object to be placed in the NonNegInts set. This is an example of

a general class of cascading changes caused by changing state that is constrained by

other model definition rules. In general, updates to concrete data structures may

affect any model definition rules that read the updated state.

This update also causes the third model definition rule to add a primitive integer

value to the IntValues set. This occurs because the data structure update causes a

new object to be added to the AllInts set and the third model definition rule then

quantifies over this set. This is an example of a more general class of cascading change

caused by changes to the relational model. In general, changes to the relational model

may cause any model definition rule that quantifies over the changed set (or relation)

or tests membership in the changed set (or relation) to be satisfied or falsified.

These unintended cascading changes can cause additional constraints to be vi-

olated. After the repair algorithm performs a concrete data structure update, our

repair algorithm rebuilds the model, and rechecks the constraints. If the repair algo-

rithm finds further violations, it repairs these violations. It repeats this process until

all violations have been repaired.

2.6 Termination of the Repair Algorithm

One issue with this repair strategy as outlined above is that it can fail to terminate.

For example, a repair algorithm could repair a violation of one constraint and in

the process violate a second constraint. The repair algorithm could then repair the

violation of the second constraint and in the process violate the original constraint,

leading to an infinite repair loop.

The specification compiler is the part of our system that compiles the data struc-

ture consistency specifications into C code that implements the repair algorithm. Our

specification compiler reasons as follows to ensure that all repairs terminate.

41

2.6.1 Repair Dependence Graph

We have developed the repair dependence graph to reason about termination of the

repair process. The repair dependence graph captures dependences between repair

actions and constraints. Note that events in an individual repair follow paths in the

graph. For example, suppose that the repair algorithm decides to repair a conjunction.

It then would perform model repairs followed by data structure updates to implement

the model repairs. Note that the data structure updates may change the scopes of the

model definition rules, and as a result the repair algorithm may perform compensation

updates to counteract these scope changes. All of these chains of events correspond

to the paths in the repair dependence graph that start from the model conjunction.

Therefore, the specification compiler can determine what constraints a given repair

action may (transitively) violate by tracing out the edges in this graph. By examining

what part of the graph is reachable from a given repair action, the specification

compiler can determine all possible cascading constraint violations and repair actions

that a given repair action could transitively cause. The absence of cycles in this

graph implies that there are no infinite repair loops, and therefore that the repair

process eventually terminates. We give a correctness argument of this implication in

Section 6.5.

The basic idea is that the repair dependence graph has a node for each conjunction

of each constraint and a node for each repair action. The graph contains directed

edges to keep track of dependences between the repair actions and the constraints.

The specification compiler places an edge from a conjunction node to a repair action

node if satisfying the conjunction corresponding to the conjunction node may require

the repair algorithm to perform the repair action corresponding to the repair action

node. The specification compiler places an edge from a repair action node to a

conjunction node if performing the repair action corresponding to the repair action

node may falsify the conjunction corresponding to the conjunction node.

Figure 2-6 presents the repair dependence graph for this example. The elliptical

nodes correspond to conjunctions in the disjunctive normal form of a constraint. The

42

3. size(NonNegInts)=0

4. Remove object from NonNegInts

1. size(AllInts)=1

2. Add object to AllInts

Figure 2-6: Repair Dependence Graph

elliptical node labeled 1. size(AllInts)=1 corresponds to the first constraint. The

elliptical node labeled 3. size(NonNegInts) correspond to the second constraint.

The rectangles correspond to repair actions. The rectangular node labeled 2. Add

object to AllInts corresponds to a model repair that adds an object to the AllInts

set to satisfy the first consistency constraint. The rectangular node labeled 4. Remove

object from NonNegInts corresponds to a model repair that removes an object from

the NonNegInts set to satisfy the second consistency constraint.

The edges in this graph capture dependences. The edges from elliptical conjunc-

tion nodes to rectangular repair action nodes capture the dependence that repairing

violations of the corresponding conjunctions requires performing the corresponding

repair actions. The edges from the rectangular repair action nodes to the elliptical

conjunction nodes captures the dependence that performing the corresponding repair

action may violate the corresponding conjunctions.

2.6.2 Cascading Changes

One complication with this approach is that data structure updates can cause addi-

tional changes to the model as described in Section 2.5.1. This can happen because

other model definition rules may depend on the state modified by a data structure

update, and therefore, the data structure update may cause such model definition

rules to add or remove an object (or tuple) to or from a set (or relation). This can

also happen if model definition rules quantify over or test membership in the set (or

relation) that the data structure update changes, and therefore, the data structure

update can cause additional additions or removals of objects (or tuples) to or from sets

43

(or relations). These changes can propagate even further through the same cascading

mechanism.

The solution to this problem is to fix the repair dependence graph so that it tracks

these cascading changes. Our solution adds a pair of nodes for each model definition

rule. One node represents a change that causes the model definition rule to add an

object (or tuple) to a set (or relation), while the other represents a change that causes

the model definition rule to remove an object (or tuple) from a set (or relation). We

refer to these nodes as scope increase and scope decrease nodes, respectively.

We also add nodes to represent data structure updates. These are necessary

because there are often multiple ways to translate a model repair into a data structure

update, and each of these data structure updates may potentially cause different

additional changes to the model. The specification compiler uses the data structure

update nodes to keep track of the different effects of each of the data structure updates

that implement a given model repair.

We add the following edges to capture the dependences between model repair

actions, data structure updates, model definition rules, and constraints:

• Edges from Model Repair Nodes:

To translate a model repair to the concrete data structure, the repair algorithm

performs data structure updates on the concrete data structure. The specifica-

tion compiler tracks this dependence by placing an edge from a model repair

node to the data structure update nodes that implement the given model repair.

The changes that a model repair makes to the relational model may cause

model definition rules to add or remove additional objects (or tuples) from sets

(or relations). The specification compiler tracks these dependences by placing

an edge from a model repair node to a scope increase or decrease node if the

corresponding model repair may cause the corresponding model definition rule

to add or remove, respectively, an object (or tuple) to or from a set (or relation).

• Edges from Data Structure Update Nodes:

44

A data structure update may change the state that other model definition rules

depend on, causing them to add or remove objects (or tuples) to or from sets

(or relations). The specification compiler tracks these dependences by placing

an edge from a data structure update node to scope increase or decrease nodes

if the corresponding data structure update may cause the corresponding model

definition rule to add or remove, respectively, an object (or tuple) to or from a

set (or relation).

• Edges from Scope Nodes:

Changes in the scope of one model definition rule may result in further changes

in the scopes of other model definition rules. The specification compiler tracks

these dependences by placing an edge from one scope node to a second scope

node if a change in the scope of the model definition rule corresponding to the

first scope node may result in a change in the scope of the model definition rule

corresponding to the second scope node.

Finally, changes in the scope of a model definition rule cause changes to the

model that may falsify constraints. The specification compiler tracks these

dependences by placing an edge from a scope increase or decrease node to a

conjunction node if increases or decreases, respectively, of the corresponding

model definition rule may cause the conjunction to be falsified.

Recall that Figure 2-4 presents the model definition rules for the example. Our

tool analyzes these model definition rules to translate the model repairs into data

structure updates. Recall that the repair algorithm translated a model repair that

added the newly allocated object to the AllInts set into a concrete data structure

update that sets the variable ptr to point to the newly allocated IntObj object, and

that this data structure update could potentially add the object to the NonNegInts

set.

Figure 2-7 presents the repair dependence graph with nodes added to model data

structure updates and model definition rule scope changes. The dashed rectangles are

data structure update nodes, and the dashed ellipses are scope increase nodes. The

45

9. Falsify Rule 1

1. size(AllInts)=1

11. Falsify Rule 3

2. Add object to AllInts

3. size(NonNegInts)=0

4. Remove object from NonNegInts

10. Set value equal to -18. Set ptr equal to null

5. Set ptr equal to
 newly allocated object

7. Satisfy Rule 26. Falsify Rule 2

12. Satisfy Rule 3

Figure 2-7: Repair Dependence Graph with Updates

graph construction algorithm generates the scope increase node 7. Satisfy Rule 2

because setting the variable ptr to the newly allocated object may cause the second

model definition rule to add the object to the NonNegInts set if its value field is

non-negative. Note that the edge from the data structure update node 8. Set ptr

equal to null to the scope increase node 7. Satisfy Rule 2 is present because

our graph construction algorithm is conservative. The analysis places this edge be-

cause setting the variable ptr to null may affect the proposition ptr.value!=null

in the second model definition rule. Our graph construction algorithm places edges

from this scope increase node to the conjunction node 3. size(NonNegInts)=0 be-

46

cause adding an object to the NonNegInts set will violate the consistency constraint

size(NonNegInts)=0. The algorithm places edges from the rectangular model re-

pair nodes to the dashed rectangles data structure update nodes, because the repair

algorithm performs these data structure updates to implement the model repairs.

2.6.3 Pruning Nodes

As we discussed earlier, the absence of cycles in the repair dependence graph implies

that the repair algorithm will terminate. However, the graph in Figure 2-7 contains

the cycle indicated by the dotted edges. Note that the specification compiler has

translated the model repair represented by the model repair node 4. Remove object

from NonNegInts into two different data structure updates corresponding to the data

structure update nodes 8. Set ptr equal to null and 10. Set value equal to

-1. The generated repair algorithm only needs to perform one of the two data struc-

ture updates to implement the repair. Therefore, we can prune the data structure

update node 8. Set ptr equal to null from the graph because the repair algo-

rithm never needs to perform this update. We present the resulting acyclic graph in

Figure 2-8. Since this graph is acyclic, the corresponding repair algorithm terminates.

2.6.4 Compensation Updates

Our translation of model repairs into data structure updates is based on analyzing a

single model definition rule to synthesize a data structure update. One downside of

this approach is that it ignores the effect of this update on other model definition rules.

We could potentially synthesize more precise updates by simultaneously considering

multiple model definition rules.

We created compensation updates to partially address this issue. Compensation

updates prevent undesired increases in the scope of a model definition rule by falsifying

the guard of the model definition rule or by removing an object (or tuple) from one

of the sets (or relations) that appear in the model definition rule’s quantifiers. The

repair algorithm implements a model repair by using a data structure update and

47

3. size(NonNegInts)=0

4. Remove object from NonNegInts

10. Set value equal to -1

5. Set ptr equal to
 newly allocated object

7. Satisfy Rule 2 6. Falsify Rule 2

12. Satisfy Rule 311. Falsify Rule 3

1. size(AllInts)=1

2. Add object to AllInts

Figure 2-8: Pruned Repair Dependence Graph with Updates

a set of compensation updates. To support compensation updates we have added

further nodes and edges to the repair dependence graph as described in Section 6.

2.7 Scope

While we successfully used data structure repair to enable several applications to

recover from otherwise fatal data structure inconsistencies, the approach has the

following limitations:

• Parsing of Data Structures: The current system is designed to repair data

structures that are stored in the fields of objects. Some systems store data as

a long textual string that must be parsed. Examples of such data structures

48

include XML and HTML documents. These data structures require a more

advanced approach to parsing: a parser must recognize textual tokens in the

document and then combine these tokens into expressions. Other data struc-

tures such as the Windows NT file system store data as a sequence of variable

length records. To decode these data structures, the system must parse the

variable length records. Our model building approach is currently unable to

parse such data structures.

• Support for Primitive Types: The current system does not support some

of the commonly used primitive types. For example, it does not support 64 bit

integers, unsigned integers, or floating point numbers. As a result, many invari-

ants cannot be expressed in our system. However, it should be straightforward

to add support for additional primitive types into our system.

• Repair Generation: Even if the developer is able to write a given consistency

constraint in the specification language, the specification compiler may not be

able to generate a repair algorithm for the given specification. This can occur

because the specification compiler is unable to generate the necessary repair

actions. For example, the current repair system only generates repair actions

that repair a single constraint violation. Repairing some sets of constraints may

require repair actions that simultaneously solve multiple constraints.

• Termination Analysis: Even if the specification compiler can generate the

necessary repair actions, it is possible for the specification compiler to be unable

to verify that the generated repair algorithm terminates. This can occur be-

cause the conservative repair dependence graph construction algorithm places

extraneous edges in the graph, or because repair dependence graph-based ap-

proach is insufficient to show that a given repair algorithm terminates. This can

happen if the repair dependence graph contains cycles that the repair algorithm

only repairs a bounded number of times.

49

• Developing Specifications: Developing specifications may prove to be a sig-

nificant burden in some cases. For example, the effort required to develop a

specification for a large legacy application may preclude using our data structure

repair tool. While we have written some specifications for large applications,

these specifications were partial and they described easily understood core data

structures. Complete consistency specifications for complicated, poorly docu-

mented data structures may be very difficult to write. Most of the difficulty

in such an effort would likely arise in understanding how the application ma-

nipulates data structures. In particular, the developer must understand what

consistency properties should hold for the data structures in the application,

and when these consistency properties should hold. Furthermore, the developer

must annotate the application to indicate where a given specification should

hold.

• Runtime Overhead: The repair algorithm uses dynamic consistency checking

to detect data structure inconsistencies. Every time it checks the consistency

properties, it traverses the data structures, builds an abstract model of the data

structure, and then checks the consistency properties on this abstract model.

For applications that manipulate data structures with many consistency prop-

erties that must be checked or that require very frequent consistency checking,

the checking overhead can be significant. It may be possible to reduce this

checking overhead by a combination of static analysis and utilizing hardware

page protection mechanisms to incrementally check consistency constraints.

• Types of Errors: Data structure repair only addresses data structure corrup-

tion errors. Other types of software errors are out of the scope of this technique.

Techniques such as recursive restartability have been developed to handle other

types of errors [9]. Recursive restartability can handle errors that corrupt the

transient state or that cause the application to follow the wrong execution path

by rebooting the affected component. However these techniques cannot handle

corruption of persistent data structures or recurrent problematic inputs. Hybrid

50

recovery strategies that incorporate repair should be able to effectively recover

from a larger class of errors.

• Applicability: While data structure repair may prevent an application from

crashing, it is still possible for the application to produce unacceptable results.

For example, incorporating repair into cryptography routines is likely to result

in either insecure and/or unreadable messages. Further experience using data

structure repair may help us develop a better intuition of what applications are

appropriate for data structure repair.

2.8 Summary

Our approach relies on a developer-provided data structure consistency specification.

Our repair algorithm uses this specification to decode the string of bits in the heap

into objects with fields, to construct the sets and relations in an abstract relational

model of the data structures, then to check all of the consistency constraints on this

model. If the repair algorithm finds a violated constraint, it performs repairs to

this model, and then translates these model repairs into data structure updates that

modify the bits in the heap. It repeats this process until all of the constraints are

satisfied. Our system statically analyzes the generated repair algorithm to verify that

it terminates.

51

52

Chapter 3

File System Example

Having described at a high level how our repair algorithm works, we now present a

more extensive example, which implements a simple file system. File systems are a

useful example to consider because they have many rich consistency properties that

must be satisfied to ensure proper operation; they are prone to inconsistencies due

to hardware faults, user errors, and software errors; they are persistent data struc-

tures and therefore inconsistencies persist across reboots; and finally, it is typically

unacceptable to restore a file system’s consistency by reinitializing it. Repair is par-

ticularly useful for file systems because an inconsistency in a file system can cause

valuable data to become unreadable. For these reasons, file system developers have

traditionally provided hand-coded utilities such as chkdsk [3], fsck [5], or scandisk to

detect and repair inconsistencies. This example shows how we automatically generate

a repair algorithm for a file system from a specification.

Figure 3-1 presents a graphical representation of the file system in our example.

The file system consists of an array of disk blocks. In order to quickly allocate new

blocks, the file system keeps a table of which blocks are in use. The file system

reserves a block, the bitmap block, for storing this table. The file system reserves

another block to store the inode table, which keeps track of which blocks store the

information for a particular directory or a file. Finally, the first block in the file

system is reserved for the superblock, which is a special block that stores critical file

system configuration information. For example, it stores the size of the blocks in

53

Figure 3-1: Inconsistent File System

the file system, which block contains the block bitmap, and which block contains the

inode table.

The particular file system shown in Figure 3-1 has an inconsistency. As indicated

by the ’X’, the bitmap block location stored in the superblock has been corrupted

and no longer stores the correct location of the bitmap block. As a result, future

block allocations will fail.

3.1 Consistency Specification

The data structure consistency specification consists of two parts: a part that specifies

a translation from the concrete data structures into an abstract model, and a part that

specifies consistency constraints that this abstract model must satisfy. The translation

part of the specification consists of the data structure declarations in Figure 3-2 (these

declarations specify the physical layout of the data structures that comprise the file

system), the set and relation definitions in Figure 3-3 (these definitions specify the

sets and relations in the model of the file system), and the model definition rules in

Figure 3-4 (these rules specify how to construct the abstract model from the data

structures).

3.1.1 Structure Declaration

The first part of the translation specification specifies how the data structures are

physically laid out in memory. This part of the specification uses a structure definition

54

structure Disk {
Block b[d.s.numberofblocks];
label b[0]: SuperBlock s;

}
structure Block {

reserved byte[d.s.blocksize];
}
structure SuperBlock subtype of Block {

int numberofblocks;
int numberofinodes;
int blocksize;
int rootdirectoryinode;
int blockbitmap;
int inodetable;

}
structure BlockBitmap subtype of Block {

bit bitmap[d.s.numberofblocks];
}
structure DirectoryBlock subtype of Block {

DirectoryEntry de[d.s.blocksize/128];
}
structure DirectoryEntry {

byte name[124];
int inode;

}
structure InodeTable subtype of Block {

Inode itable[d.s.numberofinodes];
}
structure Inode {

int block[12];
int referencecount;

}

Disk *d;

Figure 3-2: Structure Definitions

55

language that is similar to C structure definitions with a few extensions. One of these

extensions allows the developer to specify variable length arrays in which the length

is stored in a data structure. We now examine the data structure definitions in

Figure 3-2 in more detail.

The file system consists of an array of Block objects. The first line in the Ďisk

structure definition declares that the Disk object contains this array of blocks. The

second line declares a label s for the first block in the file system and that this block

has the type Superblock. Note also that the size of the array of blocks is given

by the expression d.s.numberofblocks. The d variable in this expression refers to

the Disk *d; declaration at the bottom of the figure. This declaration declares that

the variable d points to a Disk object and that this value is provided to the repair

algorithm from the underlying application. The s refers to the label s in the Disk

type declaration, and the numberofblocks refers to the numberofblocks field in the

SuperBlock type declaration.

The Block structure definition specifies that a block is d.s.blocksize bytes long.

The reserved keyword indicates that the Block structure doesn’t define how this

space is used. This value is stored in the SuperBlock of the file system.

The SuperBlock stores the basic layout parameters for the file system: it stores

the number of blocks and inodes, the size of the blocks, the inode that contains the

root directory, and the locations of the block bitmap and the inode table. Note

that the first line of the Superblock declaration structure SuperBlock subtype

of Block declares that the SuperBlock type structurally inherits from the Block

type. This indicates that the fields declared in the ŠuperBlock declaration can refine

the reserved space in the Block declaration, and that objects of the SuperBlock

type have the same size as objects of the Block type.

The BlockBitmap contains an array of bits: one bit for each block in the file

system. If the block is used, the corresponding bit is set to true. Otherwise, if the

block is free, the corresponding bit is set to false. This array of bits enables the file

system to efficiently allocate unused blocks.

The DirectoryBlock contains an array of directory entries. Each DirectoryEntry

56

contains the name of a file and a reference to the file’s inode.

The InodeTable contains the array of inodes in the file system. Each Inode

stores references to the blocks that contain the file’s data and a reference count. This

reference count stores a count of how many directory entries reference the inode.

3.1.2 Model Definition

The next part of the translation specification specifies how to construct the sets and

relations in the model from the objects discussed in the previous section. This part

of the specification first declares the sets and relations in the abstract model and

then specifies how to construct the sets and relations in the abstract model from the

concrete data structure. The model construction phase places objects in the data

structure into the appropriate sets and constructs the relations.

Figure 3-3 presents the set and relation declarations for our abstract model of

the file system example. The declaration set Block of Block : UsedBlock |

FreeBlock declares that the set Block contains data structures of type Block and

contains two subsets: UsedBlock and FreeBlock. In general, the set declarations

in Figure 3-3 are of the form set S of T : S1| . . . |Sn. Such a declaration specifies

that the set S in the model contains objects of type T (these types are either base

types such as int or structures) and that the sets S1, . . . , Sn are subsets of the set

S. The declaration relation InodeOf: DirectoryEntry -> UsedInode declares

that the relation InodeOf relates objects in the set DirectoryEntry to objects in

the set UsedInode. In general, the relation declarations in Figure 3-3 are of the form

relation R : S1 -> S2. Such a declaration specifies that the relation R relates the

objects in set S1 to the objects in set S2.

Conceptually, the model definition rules in Figure 3-4 specify how to traverse the

data structures to build the sets and relations in the abstract model. The model def-

inition rules are of the form Quantifiers, Guard => Inclusion Condition. Each

rule specifies quantifiers that identify the scope of the variables in the body. The

inclusion condition specifies an object (or tuple) that must be in a specific set (or re-

lation) if the guard is true. The repair algorithm evaluates the model definition rules

57

set Block of Block : UsedBlock | FreeBlock
set UsedBlock of Block : SuperBlock | FileDirectoryBlock | InodeTable |
BlockBitmap

set FileDirectoryBlock of Block : DirectoryBlock | FileBlock
set UsedInode of Inode : FileInode | DirectoryInode
set DirectoryInode of Inode : RootDirectoryInode
set DirectoryEntry of DirectoryEntry
relation InodeOf: DirectoryEntry -> UsedInode
relation Contents: UsedInode -> FileDirectoryBlock
relation BlockStatus: Block -> int
relation ReferenceCount: UsedInode -> int

Figure 3-3: Set and Relation Declarations

on the concrete data structure to generate the abstract model. Figure 3-4 presents

the model definition rules for the file system example.

The first model definition rule places the first block in the file system in the

SuperBlock set. The next two model definition rules place the d.s.blockbitmap and

d.s.inodetable elements of the block array into the BlockBitmap and InodeTable

sets, respectively. These three model definition rules identify key blocks in the file

system and place them into sets.

The rootdirectoryinode field of the SuperBlock stores the index of the root

directory in the inode table. The fourth model definition rule places this inode in the

RootDirectoryInode set. The fifth model definition rule states that objects that are

not in the UsedBlock set should be placed in the FreeBlock set.

The bitmap array in the BlockBitmap object records whether blocks in the file

system are in use. The sixth model definition rule uses this array to construct the

BlockStatus relation to map blocks to boolean values that indicate whether the

blocks are in use.

The remaining model definition rules, in order, construct a set of directory en-

tries; decode these entries to construct a set of file inodes; construct the relation

InodeOf, which maps directory entries to the corresponding inodes; construct the

relation ReferenceCount, which maps inodes to the corresponding reference counts;

decode the inodes to construct the set of blocks in files; and construct the relation

Contents, which maps inodes to the blocks that store the contents.

58

In general, we intend that developers will use the sets in the abstract model to

group all the objects with the same consistency properties together. For example, the

eleventh model definition rule places all of the blocks that store the contents of files in

the FileBlock set. We intend that developers will use relations to map these objects

to primitive values (or other objects) that these objects are conceptually associated

with.

1. true => d.s in SuperBlock
2. true => d.b[d.s.blockbitmap] as BlockBitmap in BlockBitmap
3. true => d.b[d.s.inodetable] as InodeTable in InodeTable
4. for itb in InodeTableBlock, true => itb.itable[d.s.rootdirectoryinode] in

RootDirectoryInode
5. for j=0 to d.s.numberofblocks-1, !(d.b[j] in UsedBlock) => d.b[j] in FreeBlock
6. for j=0 to d.s.numberofblocks-1, for bbb in BlockBitmap, true =>

<d.b[j],bbb.bitmap[j]> in BlockStatus
7. for di in DirectoryInode, for j=0 to (d.s.blocksize/128-1), for k=0 to 11,

true => (d.b[di.block[k]] as DirectoryBlock).de[j] in DirectoryEntry
8. for e in DirectoryEntry,for itb in InodeTable, e.inode!=0 =>

itb.itable[e.inode] in FileInode
9. for e in DirectoryEntry,for itb in InodeTable, e.inode!=0 =>

<e, itb.itable[e.inode]> in InodeOf
10. for j in UsedInode, true => <j,j.referencecount> in ReferenceCount
11. for i in UsedInode, for j=0 to 11, !(i.block[j]=0) =>

d.b[i.block[j]] in FileBlock
12. for i in UsedInode, for j=0 to 11, !(i.block[j]=0) =>

<i,d.b[i.block[j]]> in Contents

Figure 3-4: Model Definition Rules

3.1.3 Consistency Constraints

Consistency consistency constraints specify the data structure consistency properties

that should hold for the abstract model. Consistency constraints are specified using

the consistency constraint language. The specification language allows the developer

to use the logical connectives (and, or, not) to assemble the body of a constraint

out of basic propositions. These basic propositions express basic properties on the

sets and relations. Our consistency constraint language includes universal quantifiers

that can quantify over the objects in the sets or the tuples in the relations. The

consistency constraints in Figure 3-5 identify the consistency properties that the file

59

system model must satisfy.

The first pair of constraints uses the size predicate to specify that the BlockBitmap

and InodeTable sets must contain exactly one object. Because the model definition

rules place specific disk structures into these sets, the consistency constraints function

to ensure that these disk structures exist.

The next constraints specify properties that all objects in a given set must sat-

isfy. The third constraint ensures that the BlockStatus relation maps blocks in

the UsedBlock set to the boolean value true, and the fourth consistency constraint

ensures that the BlockStatus relation maps blocks in the FreeBlock set to the

boolean value false. The combined effect of these two constraints is to ensure that

the BlockStatus relation correctly records whether blocks are in use or free.

The fifth consistency constraint for i in UsedInode,

i.ReferenceCount=size(InodeOf.i) specifies that the reference count for each used

inode must reflect the number of directory entries that refer to that inode. 1 The

final consistency constraint ensures that each file or directory block is referenced by

at most one directory entry. Formally, this constraint ensures that the inverse of the

Contents relation evaluated on a member of the FileDirectoryBlock set contains

exactly one object. In general, each consistency constraint is a first-order logical

formula consisting of a sequence of quantifiers followed by a quantifier-free boolean

formula of basic propositions.

1. size(BlockBitmap)=1
2. size(InodeTable)=1
3. for u in UsedBlock, u.BlockStatus=true
4. for f in FreeBlock, f.BlockStatus=false
5. for i in UsedInode, i.ReferenceCount=size(InodeOf.i)
6. for b in FileDirectoryBlock,size(Contents.b)=1

Figure 3-5: Consistency Constraints

1The expression InodeOf.i denotes the image of i under the inverse of the InodeOf relation —
in other words, the set of all objects that InodeOf relates to i.

60

3.2 Repair Algorithm

The generated repair algorithm finds violations of the consistency constraints in the

model, synthesizes model repairs that eliminate the consistency violations, and then

translates model repairs into concrete data structure updates. Because there may be

many constraint violations, our repair algorithm then repeats the model construc-

tion, the consistency violation detection phase, the model repair phase, and the data

structure update phase until all constraints hold.

We illustrate the operation of the repair algorithm by discussing the steps it takes

to repair a file system whose superblock has an out-of-bounds bitmap block index.

At the end of the model construction process, the repair algorithm constructs the

abstract model shown in Figure 3-6.

Notice that the BlockBitmap set in Figure 3-6 is empty. This occurs because

the bitmap block index d.s.blockbitmap is out-of-bounds, and therefore the second

model definition rule does not insert any blocks into the BlockBitmap set. Since the

BlockBitmap set is empty, the model violates the first consistency constraint from

Figure 3-5.

To repair this violation, the repair algorithm performs a model repair that adds

a block from the FreeBlock set (the developer specifies this set as the source of new

Blocks to insert into other sets) to the BlockBitmap set. To generate an update that

implements this addition, the compiler finds the model definition rule that constructs

the BlockBitmap set. The relevant model definition rule from Figure 3-4 is true =>

d.b[d.s.blockbitmap] as BlockBitmap in BlockBitmap. The compiler analyzes

this model definition rule to determine that the inclusion condition of this rule adds

the block from the array d.b at offset d.s.blockbitmap to the BlockBitmap set. As

a result, the repair algorithm can make this model definition rule add a block to the

BlockBitmap set by calculating the block’s index in d.b and setting d.s.blockbitmap

equal to this value. Notice that calculating the block’s index in d.b only works if the

selected block is a member of the array d.b. To ensure that the selected block is a

member of the array d.b, it suffices to show that all members of the set from which

61

Figure 3-6: Broken Model

62

the block was selected, the FreeBlock set, are in this array. To check this condition,

the compiler analyzes the rule that constructs the FreeBlock set to determine that

all blocks in the FreeBlock set are from the array d.b, and therefore it can set

d.s.blockbitmap to the index j of the block d.b[j]. The resulting file system is

shown in part B of Figure 3-7. An additional effect of the data structure update is

that the block becomes a member of the set UsedBlock of used blocks and is removed

from the FreeBlock set.

After this update, the repair algorithm rebuilds the abstract model. This rebuilt

abstract model is given in Figure 3-8. Notice that although the BlockStatus relation

now maps blocks to boolean values, it does not correctly map blocks in the FreeBlock

set to the value 0 (representing false) nor blocks in the UsedBlock set to the value

1 (representing true). Therefore, when the repair algorithm checks the consistency

constraints, it discovers several violations of the consistency constraints 3 and 4 in

Figure 3-5. These violations occur because the bits in the new bitmap block do

not correctly reflect which blocks are free and which blocks are in use. The repair

algorithm repairs each of these violations by repairing the incorrect tuples in the

BlockStatus relation to reflect the contents of the UsedBlock and FreeBlock sets

— if a block u is used, the repair algorithm ensures that 〈u, true〉 (and no other tuple

with u as its first component) is in the BlockStatus relation, and if a block u is free,

the repair algorithm ensures that 〈u, false〉 is in the BlockStatus relation.

The translation of a model repair that removes an object (or tuple) from a set (or

relation) to the concrete data structures occurs when the repair algorithm rebuilds

the model. For example, whenever model definition rule 6 in Figure 3-4 attempts to

add an incorrect tuple to the BlockStatus relation, the repair algorithm performs a

data structure update that sets the corresponding element (bbb.bitmap[j]) in the

concrete data structure to the correct value. Part C of Figure 3-7 presents the repaired

file system after these updates have been performed. After the repair algorithm

performs all of these updates, it rebuilds the model. Figure 3-9 shows the rebuilt

abstract model. The repair algorithm then checks the consistency constraints on this

model and finds that the repaired model satisfies all of the consistency constraints.

63

Figure 3-7: Repair Sequence

64

Figure 3-8: Model with a BlockBitmap

65

Therefore, the repair process is complete and the repair algorithm exits.

In this case, the repair algorithm used the redundant information in the file sys-

tem to regenerate the bitmap block without losing information. In general, the repair

algorithm will produce a consistent data structure that satisfies the consistency con-

straints and is heuristically close to the original inconsistent data structure. Of course,

the new consistent data structure may differ from the data structure that a (hypo-

thetical) correct application would have produced, especially if the inconsistent data

structure contains less information.

3.3 Repair Algorithm Generation

As illustrated in the preceding section, a successful repair algorithm must: 1) traverse

the model to find any inconsistencies, 2) identify the appropriate model repair action,

3) perform the data structure updates to implement the model repair action, 4) repeat

to eliminate any remaining or newly introduced inconsistencies, and 5) terminate. As

described above, the algorithm uses goal-directed reasoning to derive the concrete

data structure updates from the model definition rules. Goal-directed reasoning en-

ables the repair algorithm to guarantee that the repaired data structures satisfy the

consistency specification.

3.4 Repair Dependence Graph

A basic issue in ensuring repair termination is that repairing one constraint may cause

the repair algorithm to violate another constraint. If the repair of the newly violated

constraint, in turn, causes the originally repaired constraint to become violated, there

is an infinite repair loop. The compiler uses a repair dependence graph to reason about

termination (see Section 6.5). The edges in this graph capture any invalidation effects

that the repair of one constraint may have on other constraints; the absence of cycles

in this graph guarantees that all repairs will terminate.

Figure 3-10 presents the repair dependence graph for the example. Although this

66

Figure 3-9: Repaired Model

67

CompRem19

AbstractRemSetRule8

FalsifyRule7

FalsifyRule21

FalsifyRule8

FalsifyRule3 Conj (1,0) (size(InodeTable)==1)

FalsifyRule18

FalsifyRule19

UpdateRem16

AbstractRemSetRule3

Conj (0,0) (size(BlockBitmap)==1) FalsifyRule5

ConseqSatisfyRule21

Conj (4,0) (i.ReferenceCount==size(i.~InodeOf))

Conj (4,6) !i in UsedInode

SatisfyRule9

SatisfyRule10

SatisfyRule11

SatisfyRule22

SatisfyRule23SatisfyRule24

(i.ReferenceCount==size(i.~InodeOf)) ModifyRelation

!i in UsedInode RemoveToSet

ConseqSatisfyRule9

CompRem10

CompRem12 ConseqSatisfyRule10

CompRem11

CompRem14 ConseqSatisfyRule11

CompRem13

CompRem22ConseqSatisfyRule22

CompRem21

ConseqSatisfyRule23

CompRem23

CompRem24

ConseqSatisfyRule24

CompRem26

CompRem25

ConseqFalsifyRule9

UpdateMod1

UpdateMod0 UpdateAdd0

Conj (2,6) !u in UsedBlock Conj (2,0) (u.BlockStatus==true)FalsifyRule4 FalsifyRule20

!u in UsedBlock RemoveToSet (u.BlockStatus==true) ModifyRelationConseqFalsifyRule4 ConseqFalsifyRule20

SatisfyRule6

FalsifyRule6

FalsifyRule10

FalsifyRule11

FalsifyRule23FalsifyRule24

ConseqSatisfyRule6

CompRem3

ConseqFalsifyRule6

ConseqFalsifyRule10

ConseqFalsifyRule11

ConseqFalsifyRule23ConseqFalsifyRule24

SatisfyRule19

ConseqSatisfyRule19

CompRem16

FalsifyRule22

ConseqFalsifyRule22

ConseqFalsifyRule19

FalsifyRule9

Conj (3,0) (f.BlockStatus==false)

(f.BlockStatus==false) ModifyRelation

CompRem9

ConseqFalsifyRule7

ConseqFalsifyRule21

UpdateAdd5

SatisfyRule16 FalsifyRule16

SatisfyRule17

FalsifyRule17

ConseqSatisfyRule16 ConseqFalsifyRule16

ConseqSatisfyRule17

ConseqFalsifyRule17

UpdateRem17UpdateMod2

AbstractRemSetRule7

UpdateRem9

AbstractRemSetRule14

ConseqFalsifyRule8

FalsifyRule14

ConseqFalsifyRule14

ConseqFalsifyRule3

FalsifyRule15

ConseqFalsifyRule15

SatisfyRule4

SatisfyRule20

UpdateRem28

UpdateRem2

(size(BlockBitmap)==1) AddToSet

UpdateAdd2 SatisfyRule5

SatisfyRule14

SatisfyRule15

ConseqSatisfyRule5CompRem2

Conj (5,0) (size(b.~Contents)==1)

(size(b.~Contents)==1) AddToRelation(size(b.~Contents)==1) RemoveFromRelation

ConseqSatisfyRule14

ConseqFalsifyRule5

ConseqSatisfyRule4CompRem1

ConseqSatisfyRule20CompRem17

(size(InodeTable)==1) AddToSet

SatisfyRule7SatisfyRule21 SatisfyRule8

SatisfyRule18 SatisfyRule3

Conj (3,6) !f in FreeBlock

!f in FreeBlock RemoveToSet

ConseqSatisfyRule15

ConseqFalsifyRule18

ConseqSatisfyRule7

CompRem4

CompRem5CompRem6

UpdateRem25 UpdateRem24 UpdateRem23

UpdateRem22

UpdateRem29

UpdateRem30

AbstractRemSetRule5

UpdateRem27 UpdateRem26CompRem7CompRem18

Conj (5,6) !b in FileDirectoryBlock

!b in FileDirectoryBlock RemoveToSet

UpdateRem21

CompRem20

AbstractAddSetRule10

CompRem8

ConseqSatisfyRule8

ConseqSatisfyRule18

CompRem15ConseqSatisfyRule3 CompRem0

UpdateRem18

Figure 3-10: Repair Dependence Graph

68

graph contains many cycles, it is possible to remove these cycles by pruning nodes (and

therefore the corresponding repair actions) from the graph provided that other repair

actions can be used to satisfy the corresponding constraint (see Section 6.6). This

pruning step potentially eliminates desirable repair actions in favor of less desirable

repair actions (that potentially delete objects). However, the developer obtains a

termination guarantee by pruning the repair actions. We believe that this tradeoff is

worthwhile — without a termination guarantee the generated repair algorithm may

loop when it is deployed.

Figure 3-11 presents the pruned repair dependence graph for the file system ex-

ample. Since this graph is acyclic and contains all of the necessary repair actions,

the corresponding repair algorithm terminates and successfully repairs violations of

all of the constraints. In some cases, it is not possible to both remove the cycles in

the graph and retain a sufficient set of repair actions. In this case the specification

compiler will fail to generate a repair algorithm. We made a design trade-off here in

favor of termination; instead of failing to generate a repair algorithm, the specification

compiler could generate repair algorithms that may fail to repair constraint violation

or may fail to terminate.

69

ConseqFalsifyRule6

FalsifyRule7FalsifyRule8

FalsifyRule21

ConseqFalsifyRule7ConseqFalsifyRule8

ConseqFalsifyRule21

SatisfyRule10

ConseqSatisfyRule10

Conj (0,0) (size(BlockBitmap)==1)

(size(BlockBitmap)==1) AddToSet

SatisfyRule5UpdateAdd2

ConseqFalsifyRule9

Conj (4,0) (i.ReferenceCount==size(i.~InodeOf))

(i.ReferenceCount==size(i.~InodeOf)) ModifyRelation

UpdateMod1

UpdateMod0 UpdateAdd0

ConseqSatisfyRule24

Conj (2,0) (u.BlockStatus==true) FalsifyRule4FalsifyRule20

(u.BlockStatus==true) ModifyRelation ConseqFalsifyRule4ConseqFalsifyRule20

ConseqFalsifyRule22

SatisfyRule14

ConseqSatisfyRule14ConseqFalsifyRule15

SatisfyRule4 SatisfyRule20

ConseqSatisfyRule4 ConseqSatisfyRule20

SatisfyRule19

ConseqSatisfyRule19

SatisfyRule11

SatisfyRule24

SatisfyRule9 SatisfyRule22SatisfyRule23

ConseqSatisfyRule8

SatisfyRule8

SatisfyRule6

ConseqSatisfyRule6

SatisfyRule7SatisfyRule21

FalsifyRule9

Conj (3,0) (f.BlockStatus==false)

(f.BlockStatus==false) ModifyRelation

UpdateAdd5

SatisfyRule16 FalsifyRule16 SatisfyRule17FalsifyRule17

ConseqSatisfyRule16 ConseqFalsifyRule16 ConseqSatisfyRule17ConseqFalsifyRule17

SatisfyRule18

ConseqSatisfyRule18

SatisfyRule3

ConseqSatisfyRule3

UpdateMod2

FalsifyRule14

ConseqFalsifyRule14 ConseqSatisfyRule5

FalsifyRule15

ConseqSatisfyRule11

SatisfyRule15FalsifyRule22

ConseqSatisfyRule15

FalsifyRule6

FalsifyRule23 FalsifyRule10FalsifyRule11 FalsifyRule24

Conj (1,0) (size(InodeTable)==1)

(size(InodeTable)==1) AddToSet

ConseqSatisfyRule22

ConseqFalsifyRule23

ConseqSatisfyRule7

ConseqSatisfyRule9

ConseqFalsifyRule10ConseqFalsifyRule11

UpdateRem22

ConseqFalsifyRule24

Conj (5,6) !b in FileDirectoryBlock

!b in FileDirectoryBlock RemoveToSet

CompRem20

ConseqSatisfyRule23

CompRem24

Figure 3-11: Pruned Repair Dependence Graph

70

Chapter 4

The Specification Language

The goal of our repair tool is to generate repair algorithms that repair damaged data

structures. The repair tool uses a consistency specification to generate code that

checks whether a data structure is inconsistent and repairs any inconsistencies. The

consistency specification consists of three parts: the structure definition, the model

definition, and the consistency constraints. This chapter presents the specification

languages used by the repair tool.

4.1 Structure Definition Language

Without some way of decoding a data structure, the repair tool can only view a

data structure as a string of uninterpretable bits. Our specification compiler uses a

structure definition specification to enable the repair tool to decode the strings of

bits that represent data structures into objects with fields. The developer uses the

structure definition language to declare the layout of the data structures in memory.

This structure definition language is similar to the C language with extensions to

support variable length arrays, support for packed bit arrays, support for specifying

arbitrary alignments, and support for various types of inheritance. Figure 4-1 presents

the grammar for this language.

The developer uses this language to declare the fields (or array elements) that

comprise the data structure in a similar manner to C structure definitions. This

71

language allows the developer to declare the following kinds of fields of a structure:

8, 16, and 32 bit integers; structures; pointers to structures; packed bit arrays; arrays

of integers; arrays of structures; arrays of pointers to structures; and reserved space.

We have developed a tool to automatically extract the structure definitions from

the debugging information in binaries. This removes the burden of writing the struc-

ture definition specification from the developer.

One issue with specifying the layout of an object is specifying how the compiler

aligns the fields in objects. Many compilers align fields to the nearest machine word.

The developer can use the reserved space declaration to ensure that fields are prop-

erly aligned. Not that our structure definition extraction tool automatically handles

ensuring that the alignment of fields is properly specified. The reserved space decla-

ration can also be used to declare unused space in data structures. This space may

be used in future version of the software or by type definitions that inherit from this

declaration.

The structure definition language supports two forms of inheritance: extensional

inheritance and structural inheritance. Structural inheritance allows a developer to

define types that leave a region in the data structure undefined, and then incremen-

tally refine part of that region in a second type definition that declares fields in these

undefined parts. The developer declares that one type structurally inherits from

another type by using the subtype of keyword followed by the type it structurally

inherits from in the structure definition. Extensional inheritance allows the developer

to define a type that adds fields to a previous type definition. Extensional inheritance

was designed to support C++ style inheritance. The developer declares that one type

extensionally inherits from another type by using the subclass of keyword followed

by the type it extensionally inherits from in the structure definition.

Finally, the specification language enables the developer to declare arrays with

array bounds that are either constants or expressions over application variables.

72

structdefn := structure structurename {fielddefn∗} |
structure structurename subtype of structurename {fielddefn∗} |
structure structurename subclass of structurename {fielddefn∗}

fielddefn := type field; | reserved type; | type field[E]; | reserved type[E];
type := boolean | byte | short | int | structurename | structurename ∗

E := V | number | string | E.field | E.field[E] | E − E | E + E | E/E |
E ∗ E

Figure 4-1: Structure Definition Language

4.2 Model Definition Language

The model definition specification specifies how to abstract the concrete data struc-

tures. The model definition specification specifies both the sets and relations that

comprise the abstract model, and how to construct an abstract model given the cor-

responding concrete data structure. The specification contains two different sections:

the set and relation declarations and the model definition rules. The set and relation

declarations declare the sets and relations that comprise the abstract model and state

any subsetting and partition constraints between these sets. The model definition rule

section specifies the translation of a concrete data structure to an abstract model.

4.2.1 Set and Relation Declarations

The declaration section of the model definition language allows the developer to both

declare the sets and relations in the model and to specify subsetting and partition

constraints. Figure 4-2 presents the grammar for the set and relation declarations.

A set declaration of the form set S of T declares a set S that contains objects of

type T, where T is either a primitive type or a struct type declared in the structure

definition part of the specification.

A declaration of the form S partition S1, ..., Sn declares that the set S has n

subsets S1, ..., Sn which together partition S. Changing the partition keyword to

subsets removes the requirement that the subsets S1, ..., Sn partition S but otherwise

73

leaves the meaning of the declaration unchanged. The declarations set S of T :

(S,)∗S and set S of T : partition (S,)∗S combine a set declaration and a subset

or partition declaration.

A relation declaration of the form relation R: T1− >T2 declares a relation R

that relates objects of type T1 to objects of type T2. A relation declaration of the

form relation R: S1− >S2 declares a relation R that relates objects in the set S1 to

objects in the set S2.

D := set S of T | S partition (S,)∗S | S subset (S,)∗S | set S of T : (S,)∗S |
set S of T : partition (S,)∗S | relation R:S->S | relation R:T->T

Figure 4-2: Set and Relation Declarations

4.2.2 Model Definition Rules

The model definition rules specify a translation from the concrete data structures

into a set- and relation-based abstract model. Each model definition rule has an

optional guarded universal quantifier that identifies the scope of the rule, a guard

whose predicate must be true for the rule to apply, and an inclusion constraint that

specifies either an object that must be in a given set or a tuple that must be in a

given relation. Figure 4-3 presents the grammar for the model definition language.

Model definition rule guards use logical connectives (and, or, not) to connect

propositions. The model definition language contains three classes of propositions:

• Numerical Inequalities: Propositions of the forms FE = E, FE < E,

FE <= E, FE >= E, and FE > E check numerical inequalities on the concrete

data structures. Developers can use these propositions to ensure that a field

has a legal value before translating the field’s state into the abstract model.

• Pointer Inequalities: Propositions of the form FE = E check pointer equal-

ities on the concrete data structures. Developers can use these propositions to

74

test whether a pointer is null.

• Inclusion Constraints: Propositions of the forms E in S and 〈E, E〉 in R

check properties of the partially constructed abstract model. Developers can

use these propositions to test whether an object is a member of a set.

The presence of negated inclusion constraints can be problematic. For example,

the model definition rule for x in X, !x in Y => x in Y defines the set Y

to contain all objects that are not in Y. To prevent such problematic model

definition rules, restrictions are placed on the use of inclusion constraints in

order to ensure that the abstract model is well-formed. Section 5.3.2 discusses

these restrictions.

M := (Q,)∗ G=>I

Q := for V in S | for 〈V, V〉 in R | for V = E to E

G := G and G | G or G | !G | (G) | FE=E | FE < E | FE <= E | FE >= E | FE > E |
true | E in S | 〈E,E〉 in R

I := FE in S | 〈FE,FE〉 in R

E := FE | number | string | E+E | E-E | E*E | E/E

FE := V | FE.field | FE.field[E]

Figure 4-3: Model Definition Language

4.3 Consistency Constraint Language

Figure 4-4 presents the grammar for the model constraint language. Each consistency

constraint consists of an optional quantifier Q followed by a body B. The consistency

constraint language only supports guarded universal quantifiers, and these quantifiers

must appear to the left of the constraint body. We omitted existential quantifiers from

the language to simplify the consistency checking and repair processes. These restric-

tions simplify checking the consistency properties: the constraint checking step simply

iterates over all of the constraint bindings to evaluate the consistency constraint.

75

The body uses logical connectives (and, or, not) to combine basic propositions P.

The basic propositions capture the data structure consistency properties in terms of

the sets and relations in the abstract model. The language includes four classes of

basic propositions:

• Set Size Propositions: Basic propositions of the forms size(SE)=c,

size(SE)>=c, and size(SE)<=c constrain the sizes of sets. Set expressions SE

can either be base sets declared in the set and relation declarations or derived

sets defined by the application of relations (or their inverses) to a variable. This

type of constraint can be used to ensure that certain data structures exist.

• Inclusion Propositions: Basic propositions of the form V in SE constrain

a variable V to be in a set. As above, a set expression SE can either be a set

declared in the model declaration or a set defined by the application of relations

(or their inverses) to a variable. These constraints are useful for writing boolean

statements about the membership of an object in a set (or a tuple in a relation).

• Numerical Inequality Propositions: Basic propositions of the forms V E=E,

V E<E, V E<=E, V E>E, and V E>=E enforce numerical inequalities. These

propositions are useful for ensuring integer bound constraints and numerical

inequalities between different variables or fields.

• Pointer Inequality Propositions: Basic propositions of the form V E=E

enforce pointer inequalities. These propositions are useful for enforcing struc-

tural properties of heap data structures. For example, propositions of the form

x.next.prev = x can be used to ensure that back pointers are consistent with

forward pointers in a doubly linked list.

4.3.1 Treatment of Undefined Values

Our system supports numerical constraints between field values by using relations to

model these fields. If a relation that is used in a numerical expression does not return

76

C := Q, C | B
Q := for V in S | for 〈V, V〉 in R

B := B and B | B or B | !B | (B) | P
P := V E=E | V E<E | V E<=E | V E>E | V E>=E | V in SE | size(SE)=c |

size(SE)>=c | size(SE)<=c
V E := (V E) | V.R | R.V | V E.R | R.V E

E := V | number | string | E+E | E-E | E*E | E/E | E.R | R.E | size(SE) | (E) |
sum(S.R)

SE := S | V E

Figure 4-4: Consistency Constraint Language

exactly one value, the evaluation of an expression containing the relation can pro-

duce surprising results. Consider the consistency constraint for x in X, x.R.R’>0

where the relation R models a (possibly null) pointer and the relation R’ models an

integer field. If x.R evaluates to the empty set, then x.R.R’ is empty and therefore

x.R.R’>0 is undefined. Simply prohibiting expressions that may evaluate to an un-

defined value is problematic, as they can be used as part of a well-defined constraint

such as for x in X, size(x.R)=0 || x.R.R’>0. Therefore, we must appropriately

handle expressions that may have undefined values.

We treat undefined values in our semantics by appropriately extending arithmetic

operations to work with undefined values and logical operations to work with maybe

according to the laws of three-valued logic. We extend the arithmetic operations to

return the maybe value when the evaluation of a relation expression that is used in

a numerical expression does not return exactly one value. Figure 4-5 gives the truth

table for three-valued logic.

4.3.2 Using Relations as Functions

The primary complication in checking constraints has to do with arithmetic and

logical expressions involving relations. Consider, for example, an expression of the

77

a b a or b a and b !a

false false false false true
false maybe maybe false true
false true true false true

maybe false maybe false maybe
maybe maybe maybe maybe maybe
maybe true true maybe maybe
true false true false false
true maybe true maybe false
true true true true false

Figure 4-5: Three Value Logic Truth Table

form V1.R1. Strictly speaking, V1.R1 is the set of objects in the image of V1 under R1,

not a single value. Our intention is that developers use these expressions only when

the relational image contains a single value. We designed the primitive arithmetic

and logical operations to take as input two singleton sets and produce the appropriate

singleton set as output. When given a non-singleton set as input, the primitives

produce the undefined value.

4.3.3 Restrictions on Basic Propositions

In Section 4.3.1, we presented how the repair algorithm treats undefined values when

evaluating boolean expressions of basic propositions. Generating a repair action for a

basic proposition that has an undefined value can be complicated: the repair action

first has to repair the undefined value and then it can enforce the constraint. We

decided to simplify the repair actions by requiring that the developer explicitly write

constraints that ensure that the arguments to a basic proposition are well-defined.

We then ensure that the generated repair algorithm enforces constraints that ensure

that a value is well-defined before evaluating any constraints that use that value. To

ensure that these values are well-defined, the system requires the following restrictions

on the specifications:

• Relations on Left-Hand Side of Inequalities are Functions:

78

If any relation used in the left hand side of an equation maps an object to

the empty set or more than one object, the evaluation of the equation is un-

defined. To simplify the repair procedure for equations, we require that the

developer write explicit constraints on each relation appearing on the left hand

side of an equation to ensure that the relation is a function over the domain

that the inequality is evaluated on. For example, we require that the predi-

cate V E = E appears only in constraints that also contain the conjunctions

!size(V.R1...Ri) = 1 for 1 ≤ i < n in its disjunctive normal form or that the

specification contains constraints that ensure size(V.R1...Ri) = 1 for 1 ≤ i < n.

• Relations on Left-Hand Side of Inequalities are Injections:

Consider the constraint for s in S, s.R.R’=s.R’’. If R maps two objects

from set S to the same object, then an update to R’ to satisfy the constraint for

one variable binding may violate the constraint for a second variable binding.

To ensure that this does not occur, we place the following restrictions on the

specifications: for propositions of the form V E = E, where V E is of the form

V.R1.R2...Rn, our system requires that the specification contains a constraint for

each Ri except Rn that for V in R(Ri), size(Ri.V) <= 1. 1 These constraints

ensure that the relations are injections, ensuring that repairs of this constraint

for one variable binding will not violate an instance of the constraint for a

different variable binding.

• Relations used as partial functions are partial functions: We added re-

strictions to the specifications to ensure that relations that are used as partial

functions are partial functions. These restriction simplify the repair algorithm as

they make the well-formedness constraints explicit. For propositions of the form

V E = E, where V E is of the form V.R1.R2...Rn, our system requires that the

specification contains the constraint on Rn that for V inD(Rn), size(V.Rn) <=

1.

1The functions D and R map a relation to the corresponding domain and range sets, respectively.

79

• Prefixes of non-empty set expressions are non-empty:

Consider the constraint for s in S, size(s.R.R’)=1. If R maps an object

in S to the empty set, the repair algorithm would have to perform a repair

action that modifies R and then repairs R’. To simplify the repair actions for

size constraints, our specification compiler requires that developer to explicitly

write a constraint that the size of s.R is non-zero. This simplifies the repair

action for this constraint, it now just needs to repair R’.

Formally, our system requires that specifications that contain constraints of

the form size(SE) = c, size(SE) >= c, !size(SE) <= c, or V in SE

where SE = V.R1...Ri, i > 1, and c > 0 also contain a constraint of the form

size(SE ′) = c′, size(SE ′) >= c′, !size(SE ′) <= c′, or V in SE ′ where

SE ′ = V.R1...Ri−1 and c′ > 0.

• Relations used in expressions as functions are functions: Our system

requires that each specification containing an expression of the form E.R must

also contain another constraint of the form size(V.R) = 1 or V.R = E ′ where

V quantifies over a set containing all the possible sets of values for E.

Our system orders the repair of the constraints to ensure that the repair algorithm

repairs any required constraints before the constraints that require them. Note that

the repair dependence graph does not restrict the ordering of repair actions. Our

specification compiler uses a separate graph to keep track of dependences in the order

that constraints are repaired.

4.4 Desugaring Set and Relation Declarations

Set declarations allow the developer to specify that one set is a subset of another, or

that a group of sets partitions another set. The specification compiler desugars the

partition constraints and subset constraints into consistency constraints and model

definition rules. Partition and subset constraints both ensure that one set is a subset

of another set. It is possible to have cyclic dependences in these constraints (i.e.

80

A ⊆ B, B ⊆ C, and C ⊆ A). The solution to such a cyclic dependency is to detect

the cyclic dependence, and combine all of sets involved in the cyclic dependence (i.e.

A = B = C).

The specification compiler first analyzes the partition and subset constraints to

find cyclic dependences. If the specification compiler discovers a cyclic dependency,

the specification compiler simply merges all sets in the cyclic dependency into a single

set. Then the specification compiler removes any constraints that it discovers to be

extraneous as a result of merging sets in a cyclic dependency to a single set.

Therefore, we can safely assume that the dependences between partition and sub-

set constraints do not include any cycles. Partition constraints are desugared into

consistency constraints that quantify over the partitioned set and contain a conjunc-

tion for each partition. This conjunction specifies that the object referenced by the

quantified variable is in one partition and not in any of the other partitions. Formally,

the specification compiler desugars partition constraints of the form S partition S1,

..., Sn into model constraints of the form: for V in S, (V in S1 and !V in S2... and

!V in Sn) or (!V in S1 and V in S2... and !V in Sn) or ...or (!V in S1 and !V in S2...

and V in Sn). While this expansion does result in a quadratic increase in the size of

the constraint, we have not found this to be an issue in practice. If this quadratic in-

crease proves to be an issue for some future specifications, we can always expand our

consistency constraint language to include a predicate that enforces that an object is

a member of exactly one set out of a list of sets.

The subset and partition constraints imply that an object in a set is also contained

in the set’s superset. We implement this by desugaring as follows: we can ensure that

the model respects this property by generating additional model definition rules.

Specifically, if a model definition rule adds an object to a subset, we generate another

model definition rule to add the object to the superset. Formally, if a subset or

partition constraint implies ∀s, s ∈ S1 => s ∈ S2, then the specification compiler

creates a new model definition rule for any model definition rule that adds an element

to S1; this new rule will be the original rule modified to add the same element to S2.

Relation declarations can optionally declare domain and range sets. We desugar

81

declared domain and range sets into consistency constraints that ensure that the

objects that compose the tuples in the relations come from the correct sets. The

specification compiler desugars relation declarations of the form relation R : S1->S2

into consistency constraints of the form: for 〈V1, V2〉 in R, (V1 in S1) and (V2 in S2).

In some cases, this consistency constraint is not necessary as the compiler is able to

analyze the model definition rules to determine that objects in the domain and/or

range of the relation are always in the correct set by construction. For example, our

algorithm does not generate the consistency constraint for S1 (or S2) if for each model

definition rule of the form (Q,)∗ G ⇒ 〈FE1, FE2〉 in R there is a model definition

rule of the form (Q,)∗ G ⇒ FE1 in S1 (or (Q,)∗ G ⇒ FE2 in S2).

4.5 Language Design Rationale

Software developers have used object modelling languages to express object-oriented

design properties of software. The design of our specification language was partly

inspired by features of object modelling languages such as Alloy [22]. 2 However, there

are significant differences between the goals of object modelling and data structure

repair that led us to develop a new specification language. Our design rationale for the

specification language was guided by the need to balance the following goals of data

structure repair: 1) the specification language needs to be simple enough to enable

efficient generation of repairs, 2) the specification language needs to be expressive

enough to capture important data structure invariants, 3) the specification language

must establish a direct connection to the data structures in the application, and 4)

the specification language needs to be simple for developers to use.

4.5.1 Set- and Relation-Based Model

We included a set and relation based abstract model in the specification language be-

cause it allows the developer to specify sets of objects in the application’s heap that

2UML [32] also contains some of these features.

82

should satisfy a given consistency property and provides a means to manage com-

plexity arising from low-level data structure implementation details. The abstraction

mechanism gives the specification developer a degree of freedom in how he or she

chooses to represent a concrete data structure in the abstract model. This represen-

tation freedom enables the system to use a simple consistency constraint language

and still be able to capture important data structure invariants. In addition, sim-

plifying the consistency constraint language simplifies both generating repair actions

and reasoning about the interactions between repair actions and model constraints.

4.5.2 Model Definition Rules

While our consistency properties are expressed in terms of a set- and relation-based

abstract model, applications store their data structures as a string of bits in the heap.

Our repair algorithm has to incorporate some mechanism of translating this string of

bits into a set- and relation-based abstract model.

One straightforward way of performing this translation is to have one set for each

type of object and one relation for each field in each type of object. The translation

step would then place all objects in the heap of a given type into the corresponding

set, and store the values of fields in the corresponding relations. There are two

problems with this approach: this approach requires that the language runtime is

able to distinguish different types of objects, and it does not allow constraints to

easily differentiate between objects of the same type that participate in different data

structures.

The TestEra [27] system performs a similar translation between Java data struc-

tures and Alloy [22] models by requiring users to write Java code to perform the

translation. The problem with this approach is that the repair algorithm could gen-

erate abstract models that do not correspond to any data structure. The user pro-

vided code would then fail to translate this abstract model back into a concrete data

structure.

We chose to use our model definition rule based approach because it allows the

developer to chose how to classify objects, we can analyze the model definition rules

83

so that the specification compiler can automatically translate model repair actions

into data structure updates, and the specification compiler can conservatively reason

about the effects of the data structure updates on the model.

4.5.3 Consistency Consistency Constraints

We chose a simplistic set of basic propositions for the model consistency constraints

and restricted the use of quantifiers to simplify the evaluation and repair of the con-

straints. We only allow universal quantifiers that appear to the left of the constraint

body, so that the generated repair algorithms can simply use a simplistic consistency

checking algorithm that evaluates the constraint body for all quantifier bindings. This

evaluation strategy gives the repair algorithm quantifier bindings for any constraint

violations, which greatly simplifies the repair algorithm.

4.6 Discussion

We designed the specification language to incorporate an abstract model of the data

structures to allow the developer to specify which objects in the heap a constraint

should apply to and to abstract low-level details out of consistency constraints. Our

current implementation explicitly separates the model definition rules from the con-

sistency constraints in order to give the developer a simpler mental model of the

repair process. This explicit separation has a downside, however. Although the set-

and relation-based abstract model simplifies many specifications, it can complicate

the specification of some simple low-level consistency properties. This occurs because

the developer has to provide model definition rules to translate all of the state needed

by a consistency property into the abstract model.

Specification languages that allow the consistency properties to reference both

the abstract and concrete state would enable the developer to take advantage of the

abstract model when it is beneficial and avoid the overhead of the abstract model when

it is not. A secondary benefit of this approach is that the developer would likely write

specifications which generate smaller abstract models, and such models would require

84

less memory and time to construct at runtime. This feature should be included in

any future implementations of the repair tool that are intended to be deployed as it

greatly simplifies writing many common consistency properties. While this feature

may complicate the specification compiler, the feature can be implemented using the

technique we have developed for satisfying guards of model definition rules.

85

86

Chapter 5

The Repair Algorithm

Now that we have presented our specification language, which describes properties of

consistent data structures, we are ready to describe how our repair algorithms actually

modify data structures to enforce consistency properties. Our specification compiler

analyzes the consistency specification to automatically generate a repair algorithm.

The generated repair algorithms all use the same basic strategy: construct a model of

the data structure, evaluate the consistency properties on this model, reason about

repair actions in terms of the model, and then translate the model repair actions into

data structure updates. This section discusses the generated repair algorithms.

5.1 Basic Concepts

This section introduces some of the basic concepts in our repair algorithms.

Abstract Model: In our system, the developer specifies consistency properties for

an abstract model of the data structures in the software system. This abstract model

consists of sets of objects and relations between these objects.

Model Construction: The model construction step of the repair algorithm creates

an abstract model that corresponds to the current data structure in the software

system. This translation step allows the consistency properties to be evaluated on

87

the data structures.

Model Repair: Our repair algorithm reasons about repairs in terms of operations

on an abstract model. For violated constraints, it generates abstract repairs that

modify the state of the abstract model by adding or removing the appropriate object

(or tuple) to or from a set (or relation).

Data Structure Update: For each model repair that the repair algorithm may

perform, the specification compiler uses goal-directed reasoning to generate a set of

data structure updates that implement the model repair. The specification compiler

generates code to perform the concrete data structure update by finding the model

definition rules that add objects (or tuples) to the set (or relation), and then uses goal-

directed reasoning to determine the updates to cause the rule’s inclusion condition to

add the object (or tuple) to the set (or relation) referenced by the inclusion condition,

to ensure that the rule’s guard is either satisfied or falsified as required by the model

repair, and to ensure that the necessary objects or tuples are in the sets or relations

that are quantified over.

Additional Effects: Although data structure updates are intended to implement a

specific model repair, they can have additional effects. These effects occur because a

data structure update may modify the state accessed by other model definition rules

(or even a different binding of the same model definition rule). The result is that a

data structure update may change the abstract model in unintended ways. We refer

to these changes as additional effects.

Compensation: In some cases, it is desirable to synthesize larger, more precise

data structure updates. Our specification compiler generates additional compensa-

tion updates to counteract any undesired effects of a data structure update. The

combination of the data structure update and these compensation updates can be

viewed as a larger, more precise data structure update that implements the desired

model repair action.

88

5.2 Repair Algorithm Overview

Our specification compiler compiles data structure specifications into repair algo-

rithms that check for inconsistencies in a data structure and repair any inconsisten-

cies. The generated repair algorithms must address the following issues: 1) repair

algorithms must be able to repair violations of all the constraints in the specifica-

tions, 2) the repair algorithms must make repairs to the concrete data structure to

satisfy constraints that are expressed in terms of an abstract model, 3) repair algo-

rithms must terminate, and 4) repair algorithms must repair arbitrarily broken data

structures.

Our compiler generates repair algorithms that use the following basic repair strat-

egy:

1. Initial Model Construction: The repair algorithm first constructs an ab-

stract model as described in Section 5.3.

2. Inconsistency Detection: The repair algorithm evaluates the consistency

constraints. If the repair algorithm finds a violation, it proceeds to the next

step. Otherwise, the data structure is consistent and the repair process exits.

3. Conjunction Selection: The repair algorithm selects one of the conjunctions

in the disjunctive normal form of the violated constraint. It will ensure that the

constraint holds by repairing the basic propositions in this conjunction. The

conjunction choice can be controlled by the developer or by a cost function that

assigns a cost to the repair of each basic proposition.

4. Model Repair: For each violated basic proposition in the conjunction, the

repair algorithm performs an abstract repair on the model. These model repairs

either add or remove objects (or tuples) from sets (or relations) to satisfy the

violated basic propositions.

5. Data Structure Updates: The repair algorithm must perform data struc-

ture updates to implement the model repair. If the repair algorithm performs

89

a model repair that adds an object (or a tuple) to a set (or a relation), it

immediately performs the corresponding data structure update. If an update

removes an object (or tuple) from a set (or a relation) or atomically modifies

a relation, the repair algorithm records that this data structure update should

be performed when the model is rebuilt. Delaying these data structure updates

enables the specification compiler to generate data structure updates without

knowing the specific quantifier bindings for the model definition rules. Step 6

performs any delayed data structure updates as it rebuilds the model.

Section 5.5.2 describes how the compiler uses goal-directed reasoning to generate

a set of data structure updates to implement a model repair.

6. Model Update: The repair algorithm performs the model construction de-

scribed in Step 1. Whenever an object (or tuple) is added to a set (or relation),

the repair algorithm checks if the object (or tuple) was in the set (or relation) in

the previous version of the model from Step 4. If the object (or tuple) was not

in the set (or relation), the repair algorithm checks if a specific data structure

update has been recorded for the given object (or tuple) and set (or relation). If

one has, the repair algorithm performs that data structure update as described

in Step 5. Otherwise, it checks if a compensation update exists for the rule re-

sponsible for the addition of the new object (or tuple). If one exists, the repair

algorithm performs the compensation update in the same manner as Step 5.

If the repair algorithm performs any updates, it recomputes the model. Once

the repair algorithm completes this recomputation, it deletes the old model and

deletes the updates recorded for objects or tuples. Then it proceeds to Step 2.

5.3 Model Construction

The model definition rules specify a translation from the concrete data structures to

an abstract model. The model construction phase constructs the abstract model by

evaluating the model definition rules applied to the concrete data structure. Finally,

90

the model construction algorithm keeps track of the memory layout to ensure that the

data structures are physically well-formed (i.e. that they reside in allocated memory

and do not illegally overlap).

5.3.1 Denotational Semantics

Figure 5-1 gives the denotational semantics of a single model definition rule M. A

model m is a mapping from set names and relation names to the corresponding sets

of objects or relations between objects. The denotational semantics represents this

mapping using a set of tuples. We define the notation m(S) to be the contents of the

set or relation S, formally the set {v | 〈S, v〉 ∈ m}. The set h models the heap in

the running application using a set of tuples representing the references in the heap.

The set h contains tuples that represent a mapping of each legal pairing of object

and field; or object, field, and integer index to exactly one HeapV alue. Given a set

of concrete data structures h, a naming environment l that maps variables to data

structures or values, and a current model m, R[M] h l m is the new model after

applying the rule M to m in the context of h and l. Note that l provides the values

of both the variables that the rules use to reference the concrete data structures and

the variables bound in the quantifiers.

5.3.2 Negation and the Rule Dependence Graph

Sometimes it is useful to construct a set of objects that do not satisfy some property.

For example, a developer may define an active set of objects that participate in a

given data structure, and then use negation to specify a free set that contains objects

that are not in the active set. Negation complicates model construction because it

may introduce a non-monotonicity into the fixed point computation that constructs

the relational model.

To address this issue, we allow negation only when a model definition rule’s

negated inclusion constraint does not depend directly on the set or relation con-

structed by that model definition rule or indirectly on this set or relation through the

91

hv ∈ HeapV alue = Bit ∪Byte ∪ Short ∪ Integer ∪ Struct

h ∈ Heap = P(Object× Field×HeapV alue ∪
Object× Field× N×HeapV alue)

v ∈ V alue = Z ∪Boolean ∪ string ∪ Struct

l ∈ Local = V ar ⇀ V alue

s ∈ Store = V alue× V alue ∪ V alue

m ∈ Model = P(V ar × Store)
R : M → Heap → Local → Model → Model

E : E → Heap → Local → Model → V alue

G : G → Heap → Local → Model → Boolean

I : I → Heap → Local → Model → Model

SE : FE → Heap → Local → Model → V alue

R[for V in S,M] h l m =
⋃

v∈m(S)R[M] h l[V 7→ v] m

R[for 〈V1, V2〉 in R,M] h l m =
⋃

〈v1,v2〉∈m(R)R[M] h l[V1 7→ v1][V2 7→ v2] m

R[for V = E1..E2,M] h l m =
⋃E[E2]h l m

v=E[E1]h l mR[M] h l[V 7→ v] m

R[G ⇒ I] h l m = if (G[G] h l m) then (I[I] h l m) else m
G[G1 and G2] h l m = (G[G1] h l m) ∧ (G[G2] h l m)
G[G1 or G2] h l m = (G[G1] h l m) ∨ (G[G2] h l m)
G[!G] h l m = ¬(G[G] h l m)
G[E1=E2] h l m = (E [E1] h l m) == (E [E2] h l m)
G[E1<E2] h l m = (E [E1] h l m) < (E [E2] h l m)
G[E1<=E2] h l m = (E [E1] h l m) ≤ (E [E2] h l m)
G[E1>=E2] h l m = (E [E1] h l m) ≥ (E [E2] h l m)
G[E1>E2] h l m = (E [E1] h l m) > (E [E2] h l m)
G[true] h l m = true
G[E in S] h l m = 〈S, E [E] h l m〉 ∈ m
G[〈E1, E2〉 in R] h l m = 〈R, 〈E [E1] h l m, E [E2] h l m〉〉 ∈ m
I[FE in S] h l m = m ∪ {〈S,SE [FE] h l m〉}
I[〈FE1, FE2〉 in R] h l m = m ∪ {〈R, 〈SE [FE1] h l m,SE [FE2] h l m〉〉}
E [FE] h l m = SE [FE] h l m
E [number] h l m = number
E [string] h l m = string
E [E1 ⊕ E2] h l m = primop(⊕, (E [E1] h l m), (E [E2] h l m))
SE [V] h l m = l(V)
SE [FE.field] h l m = b.〈SE [FE] h l m, field, b〉 ∈ h
SE [FE.field[E]] h l m = b.〈SE [FE] h l m, field, E [E]h l m, b〉 ∈ h

Figure 5-1: Denotational Semantics for the Model Definition Language

92

actions of other model definition rules. For a given model definition rule with negated

dependences on sets and/or relations, this restriction allows the model construction

algorithm to completely construct those sets and/or relations before performing the

fixed-point computation that evaluates the given model definition rule. Because these

sets and/or relations are completely constructed, negation of inclusion constraints

that reference them does not affect the fixed point computation.

We formalize this constraint using the concept of a rule dependence graph. There

is one node in this graph for each rule in the set of model definition rules. There

is a directed edge between two rules if the inclusion constraint from the first rule

adds objects or tuples to a set or relation used in the quantifiers or guard of the

second rule. If the graph contains a cycle involving a rule with a negated inclusion

constraint in the disjunctive normal form of its guard, the set of model definition

rules is not well-founded and we reject it. Given a well-founded set of constraints,

our model construction algorithm performs one fixed point computation for each

strongly connected component in the rule dependence graph, with the computations

executed in an order compatible with the dependences between the corresponding

groups of rules.

5.3.3 Ensuring a Finite Model

The presence of integers in the abstract model makes it possible to construct infinite

models. Consider the pair of model definition rules true=>0 in S and for s in

S, true => s+1 in S. This pair of model definition rules constructs a set S that

contains all non-negative integers. Unfortunately, the explicit construction of the

non-negative integers does not terminate.

We address this complication by placing restrictions on the use of arithmetic with

quantified variables. In particular, we construct a second type of rule dependence

graph. There is one node in this graph for each rule in the set of model definition

rules. There is a directed edge between two rules if the inclusion constraint from

the first rule adds objects or tuples to a set or relation used in the quantifiers of

the second rule. If a model definition rule involved in a cycle contains an inclusion

93

constraint that contains at least one arithmetic operation and an integer quantified

variable that is not used as an array index, the set of model definition rules may

construct an infinite model and we reject it. While this restriction is conservative, it

has not presented any problems in our experience.

5.3.4 Pointers

Depending on the declared type in the corresponding structure declaration, an ex-

pression of the form E.f in a model definition rule may be a primitive value (in

which case E.f denotes the value), a nested struct contained within E (in which

case E.f denotes a reference to the nested struct), or a pointer (in which case E.f

denotes a reference to the struct to which the pointer refers). It is of course possi-

ble for the data structures to contain pointers that reference unallocated memory or

pointers that overlap with other objects. We next describe how we extend the model

construction algorithm to deal with these invalid pointers.

First, we instrument the memory management system to produce a trace of op-

erations that allocate and deallocate memory (examples include malloc, free, mmap,

and munmap). We augment this trace with information about the call stack and

segments containing statically allocated data, then construct a map that identifies

valid and invalid regions of the address space.

We next extend the model construction algorithm to check that each struct

accessed via a pointer is valid before the model construction algorithm inserts the

struct into a set or a relation. All valid structs reside completely in allocated

memory. In addition, if two structs overlap, one must be completely contained

within the other and the declarations of both structs must agree on the format

of the overlapping memory. This approach ensures that only valid structs appear

in the model. If two data structures illegally overlap, the repair algorithm nullifies

the reference to one of the data structures. This guarantees that write operations

to one data structure will not corrupt the other data structure, and that the model

construction algorithm is deterministic.

We coded our model construction algorithm with explicit pointer checks so that

94

it can traverse arbitrarily corrupted data structures without generating any illegal

accesses. It also uses a standard fixed point approach to avoid becoming involved in

an infinite data structure traversal loop.

For safe languages such as Java, these low-level safety checks appear to be unnec-

essary, because it is not possible to write code in Java that produces these low-level

errors. However, if a developer is concerned with possible hardware errors, maliciously

introduced errors [17], virtual machine errors, or errors in native code these checks

would still be useful even for safe languages.

5.4 Consistency Checking

Once our tool has constructed an abstract model, it executes the consistency checking

algorithm on this model. For each model constraint, the checking algorithm iterates

through the legal quantifier bindings. The checking algorithm then evaluates the

constraints according to the semantics presented in Figure 5-2. If the consistency

checking algorithm finds a constraint violation, the repair algorithm performs repairs

as described in Section 5.5.

In our experience, consistency constraints sometimes contain expressions that do

not depend on all of the quantified variables. A naive implementation would re-

evaluate these expressions for each quantifier binding. Our specification compiler

implements the standard loop invariant hoisting optimization. When the specification

compiler determines that an expression does not depend on a quantified variable, it

lifts the evaluation of that expression outside of the given quantifier evaluation. This

optimization corresponds to loop-invariant code motion.

5.5 Repairing a Single Constraint

The inconsistency detection algorithm iterates over all values of the quantified vari-

ables in the consistency constraints, evaluating the body of the constraint for each

possible combination of the values. If the body evaluates to false, the algorithm has

95

v ∈ V alue = Number ∪Boolean ∪ string ∪Object

l ∈ Local = P(V ar × V alue)
m ∈ Model = P(V ar × Store)
s ∈ Store = V alue× V alue ∪ V alue

EV : C → Local → Model → Boolean

E : E → Local → Model → V alue

C : B → Local → Model → Boolean

V : V E → Local → Model → V alue

PR : P → Local → Model → Boolean

SE : SE → Local → Model → P(V alue)

EV[for V in S,C] l m =
∧

v∈m(S) EV[C] l[V 7→ v] m

EV[for 〈V1, V2〉 in R,C] l m =
∧

〈v1,v2〉∈m(R) EV[C] l[V1 7→ v1][V2 7→ v2] m

EV[B] l m = C[B] l m
C[B1 and B2] l m = C[B1] l m ∧ C[B2] l m
C[B1 or B2] l m = C[B1] l m ∨ C[B2] l m
C[!B] l m = ¬C[B] l m
C[P] l m = PR[P] l m
PR[V E=E] l m = (V[V E] l m == E [E] l m)
PR[V E<E] l m = (V[V E] l m < E [E] l m)
PR[V E<=E] l m = (V[V E] l m ≤ E [E] l m)
PR[V E>E] l m = (V[V E] l m > E [E] l m)
PR[V E>=E] l m = (V[V E] l m ≥ E [E] l m)
PR[V in SE] l m = l(V) ∈ SE [SE] l m
PR[size(SE)=c] l m = E [size(SE)] l m == c
PR[size(SE)>=c] l m = E [size(SE)] l m ≥ c
PR[size(SE)<=c] l m = E [size(SE)] l m ≤ c
V[V.R] l m = y.〈l(V), y〉 ∈ m(R)
V[V E.R] l m = y.〈V[V E] l m, y〉 ∈ m(R)
V[R.V] l m = y.〈y, l(V)〉 ∈ m(R)
V[R.V E] l m = y.〈y,V[V E] l m〉 ∈ m(R)
E [V] l m = l(V)
E [E1 ⊕ E2] l m = primop(⊕, E [E1] l m, E [E2] l m)
E [E.R] l m = y.∃z, z ∈ E [E] l m ∧ 〈z, y〉 ∈ m(R)
E [R.E] l m = y.∃z, z ∈ E [E] l m ∧ 〈y, z〉 ∈ m(R)
E [size(SE)] l m =| SE [SE] l m |
E [sum(S.R)] l m =

∑
x∈m(S),〈x,y〉∈m(R) y

E [number] l m = number
E [string] l m = string
SE [S] l m = {s | s ∈ m(S)}
SE [V.R] l m = {y | 〈l(V), y〉 ∈ m(R)}
SE [V E.R] l m = {y | ∃x.〈x, y〉 ∈ m(R) ∧ x ∈ SE [V E] l m}
SE [R.V] l m = {y | 〈y, l(V)〉 ∈ m(R)}
SE [R.V E] l m = {y | ∃x.〈y, x〉 ∈ m(R) ∧ x ∈ SE [V E] l m}

Figure 5-2: Denotational Semantics for Consistency Constraints
96

detected a violation and has computed an explicit set of bindings for the quantified

variables that causes the constraint body to evaluate to false. The compiler con-

verts the constraint to disjunctive normal form (disjunctions of conjunctions of basic

propositions), and performs steps 3 through 5 in the repair algorithm description from

Section 5.2.

• Conjunction or Quantifier Selection: Satisfying all of the basic propositions

in any of the constraint’s conjunctions will ensure that the constraint is satisfied.

Alternatively, the repair algorithm may remove an object (or tuple) from a set

(or relation) that the constraint is quantified over to eliminate the quantifier

binding that makes the constraint false. The first step is therefore to either

select a conjunction to satisfy or an object (or tuple) to remove from a set (or

relation) that the constraint quantifies over.

• Model Repair: Each basic proposition has a set of model repair actions that,

when performed, ensure that the basic proposition is satisfied. The next step

is therefore to perform these repair actions.

• Data Structure Updates: The repair algorithm uses a set of data struc-

ture updates to implement each model repair action; the model definition rules

determine the specific set of updates.

• Compensation: Data structure updates may have additional effects beyond

the desired model repair that cause the model to change in undesirable ways,

specifically by adding objects to sets or tuples to relations. It is sometimes

possible to generate more precise updates that prevent these additional effects

by performing additional compensation updates that falsify the guards in the

model definition rules that caused the additions to take place.

At this point, the algorithm has repaired a particular violated constraint. How-

ever, some constraints may still be violated and the data structure updates may have

violated additional constraints. The repair algorithm therefore rebuilds the model

and repairs any new or remaining violated constraints.

97

5.5.1 Model Repair Actions

The model repair action taken to repair a violated basic proposition depends on the

form of the proposition. The generated repair algorithm performs the following model

repairs for the basic propositions:

• Size Propositions: For size propositions, such as size(BlockBitmap)=1, the

generated repair algorithm simply adds or removes the minimal number of ob-

jects (or tuples) to or from the appropriate set (or relation) necessary to satisfy

the proposition.

• Inequalities: For inequality propositions, such as

i.ReferenceCount=size(InodeOf.i), the generated repair algorithm computes

the right hand side of the inequality, adds or subtracts one if the comparison is

a greater than or less than comparison, then assigns this value to the left hand

side of the inequality. For ! = the specification compiler currently adds one to

the right hand side and assigns this value to the left hand side. Note that the

compiler rewrites the comparison operation of a negated inequality to remove

the negation.

In general, inequalities can be solved by modifying the relations that appear

on the right hand side. Our specification compiler does not currently generate

such repair actions. However, the user can always rewrite the constraint so that

these relations appear on the left hand side instead.

• Inclusion Propositions: To make an inclusion proposition true, the generated

repair algorithm adds the specified object (or tuple) to the specified set (or

relation). To make an inclusion proposition false, the generated repair algorithm

removes the specified object (or tuple) from the specified set (or relation).

5.5.2 Data Structure Updates

We next discuss how the compiler uses goal-directed reasoning to translate model

repairs into actions that correctly update the concrete data structures. Given a

98

model repair that adds an object (or tuple) to a set (or relation), the compiler finds

all model definition rules that contain an inclusion constraint that may cause the

object (or tuple) to be added to the set (or relation). The goal is to synthesize a set

of data structure updates that cause the guard of one of these rules to be satisfied,

which in turn ensures that the object (or tuple) is in the set (or relation).

We normalize the guards to disjunctive normal form. The compiler selects a

model definition rule, matches the inclusion condition in the model definition rule

to the object (or tuple) to be added, selects one of the guards’ conjunctions, then

generates updates to the data structure that ensure that all of the propositions in the

conjunction are true and that the model definition rule’s inclusion condition is equal

to the object (or tuple) to be added. The specific update depends on the form of the

proposition; e.g. for inequality propositions such as v.f < E, the update computes E,

subtracts one from E to generate a value that satisfies the proposition, then assigns

this value to v.f.

In order to generate an update using a model definition rule, the compiler needs

to know what objects the quantified variables should be bound to. The compiler

resolves these bindings using one of two different strategies:

• If a set (or relation) that the model definition rules quantifies over contains at

most one object (or tuple) then the corresponding variable binding is trivially

equal to this object (or tuple). 1

• If any of the expressions in the inclusion condition of the model definition rules

is a variable, then that variable is bound to the object (or the appropriate half

of the tuple) to be added to the set (or relation). The compiler may need to

generate additional model repairs that ensure that the objects are included in

the appropriate set.

Finally, it is possible that one operation in an update changes state that is ref-

erenced by another operation in the update. The specification compiler handles this

1If there is no other constraint that the given set (or relation) must contain this element, the
update may have to perform an abstract repair that adds an object (or tuple) to the set (or relation).

99

issue by constructing a dependence graph between the various pieces of an update.

The compiler then topologically sorts the pieces of updates. If this is not possible,

the specification compiler rejects the update. Otherwise, the specification compiler

generates the update in topological order to ensure that one piece of the update will

not falsify another piece.

The compiler uses a similar strategy to implement repairs that remove an object

(or tuple) from a set (or relation) with one major simplification: it is not necessary

to compute bindings for the quantified variables for a removal. Instead, the gener-

ated repair code can simply keep track of what quantifier bindings result in a model

definition rule adding an object (or tuple) to a set (or relation). To implement the

repair, the specification compiler chooses a set of propositions that includes at least

one proposition from each conjunction of each rule that could cause the object (or

tuple) to appear in the set (or relation). It then generates actions that falsify the

propositions in this set. The compiler statically verifies that these sets of propositions

will not be contradictory. Finally, the compiler checks that there is no dependence cy-

cle between propositions that use and define the same field or variable. The compiler

generates a data structure update that satisfies the corresponding set of propositions

in a dependence-preserving order.

5.5.3 Atomic Modifications

Consider, for example, a model definition rule of the form true => <v, v.f> in R.

No possible action can just remove the tuple <v,v.f> from R because the rule does

not have a guard that can be falsified or quantify over a set or relation from which

the repair algorithm could remove an object or tuple. In this case, if the presence of

the tuple with the old value of v.f causes the model to be inconsistent, the repair

algorithm performs an update that atomically replaces the old value of the tuple with

a new value.

100

5.5.4 Recursive Data Structures

Trees and linked lists are commonly implemented using recursive data structures. The

repair algorithm discovers recursive data structures by searching for pairs of model

definition rules: a base case model definition rule of the form G ⇒ FE in S that adds

the head of the recursive data structure to S and a recursive case model definition

rule of the form for V in S, G′ ⇒ FE ′ in S that adds the rest of the recursive data

structure to S. The repair algorithm can consider two cases for adding an object to a

recursive data structure: either it can make the object the head of the recursive data

structure or it can add the object after another object in the recursive data structure.

If the repair algorithm makes the object O the head of the data structure, the

repair algorithm must make base case model definition rule add O to the set S. To

do this the repair algorithm must make the guard G of this model definition rule

true and must make the expression FE inclusion condition equal to O, i.e. it must

make FE = O true. To avoid losing elements in the recursive data structure, the

repair action must use the recursive case model definition rule to ensure that the

original head object is still in S. The repair algorithm ensures this by binding the

quantified variable V in the recursive case model definition rule to the head object

O, then making the guard G′[V/O] 2 of this model definition rule true and making

the expression in the inclusion condition FE ′[V/O] equal to the original head O′, i.e.

making FE ′[V/O] = O′ true. If the recursive data structure was originally empty,

i.e. G was initially false, we want to ensure that the recursive case model definition

rule does not add any object to the set S. The repair algorithm does this by making

its guard false, i.e. making ¬G′[V/O] true.

If the repair algorithm adds the object O after the object O′, the repair algorithm

must make recursive case model definition rule for the binding of the variable V to O′

add O to the set S. To do this the repair algorithm must make the guard G′[V/O′]

of this model definition rule true and must make the expression FE ′
V/O′ inclusion

condition equal to O , i.e. it must make FE = O true. To avoid losing elements

2We use the notation G′[V/O] to mean G′ evaluated with V bound to O.

101

in the recursive data structure, the repair action must also use the recursive case

model definition rule to ensure that the original object that followed O′ is still in S.

The repair algorithm does this by binding the variable V in the recursive case model

definition rule to the new object O, then making the guard G′[V/O] of this model

definition rule true and making the expression in the inclusion condition FE ′[V/O]

equal to the object O′′, i.e. making FE ′[V/O] = O′′ true. If the O′ was originally

the tail of the recursive data structure, i.e. G′V/O′ was initially false, we want to

ensure that the recursive case model definition rule does not add any object to the set

S. The repair algorithm does this by making its guard false, i.e. making ¬G′[V/O]

true.

We use similar reasoning to generate operations that remove objects from recursive

data structures. The repair algorithm must consider two cases for removing an object

O from a recursive data structure. If object O is added by a rule of the form G ⇒

FE in S, then the repair algorithm must satisfy FE = FE ′[V/O] and G unless

G′[V/O] was initially false, in that case it must satisfy ¬G. If object O is added by

a rule of the form for V in S, G′ ⇒ FE ′ in S where V = O′, the repair algorithm

must satisfy FE ′[V/O′] = O′′ and G′[V/O′] where O′′ is the initial value of FE ′[V/O]

unless G′[V/O] was initially false, in that case it must satisfy ¬G′[V/O′].

This algorithm easily generalizes to handle specifications in which G ⇒ FE in S

is replaced with V ′ in S ′, G ⇒ FE in S. This change does not affect the algorithm

for adding or removing an object from the middle of a recursive data structure. To

add an object to beginning of the recursive data structure, the algorithm finds an

object in S ′ (or adds one if necessary) and binds V ′ to this object. To remove an

object from the beginning of the recursive data structure, the algorithm finds the

object binding for V that adds the header of the recursive data structure to S.

5.5.5 Compensation Updates

Consider the pair of model definition rules ptr != null => ptr in AllInts and

(ptr != null) and (ptr.value >= 0) => ptr in NonNegInts from the example

in Chapter 2. Suppose that the specification compiler needs to generate a data

102

structure update to implement a model repair that adds a newly allocated object to

the AllInts set. The use of goal-directed reasoning generates an update that sets the

variable ptr equal to the address of the newly allocated object. However, depending

on the newly allocated object’s value field, this object may also be added to the

NonNegInts set. Note that the desired model repair does not add the object to this

set, and in some cases, this additional effect in the concrete data structure update

may violate consistency constraints.

Consider an update that that sets the value field of the newly allocated object

to -1 if the object was going to be added to the NonNegInts set. Note that this

update would prevent the additional effect from occurring. We call such an update

a compensation update. Note that the combination of the original data structure

update and the compensation update more precisely implements the desired model

repair.

Therefore, we augment our translation algorithm to analyze the model definition

rules to, when possible, automatically generate additional compensation updates to

eliminate the additional effects. When a model definition rule may be affected by a

data structure update, our algorithm examines that rule to derive additional updates

that restore its original value. The net effect is to improve the precision of the

translation by synthesizing larger, more precise data structure updates for each model

repair.

There are two strategies to prevent an increase in the scope of a model definition

rule:

• One strategy is to make the guard of the model definition rule false when the

scope of the model definition rule increases. This will prevent the model defi-

nition rule from adding the new object (or tuple) to the set (or relation). The

specification compiler generates such compensation updates by negating the

model definition rule’s guard, converting the negated guard into disjunctive

normal form, and then selecting a conjunction to make true.

• A second strategy is to prevent the model definition rule from increasing scope

103

by removing the objects (or tuples) that the quantified variables are bound

to when the rule increase scope. To implement this strategy, the specification

compiler generates a model repair action that removes the object (or tuple) that

the quantified variable is bound to from the set (or relation) that guards the

quantifier.

5.5.6 New Objects

A repair action may need a source of new objects to add to sets to bring them up to

the specified size or to serve as wrapper objects. For example, repairing a violation

of the constraint size(BlockBitmap)=1 caused by the BlockBitmap set being empty

requires the repair algorithm to find a block to place in this set. Other sets (as

specified in the set and relation definition) are one potential source for new objects.

For primitive types, such as integers, the action can simply synthesize new values.

For structs, memory allocation primitives are a potential source of new objects. Our

tool allows the developer to specify on a per-set basis a set where the repair algorithm

can obtain new objects from or a memory allocation method that the repair algorithm

can call. Otherwise, our tool defaults to using the standard malloc memory allocator.

104

Chapter 6

The Repair Dependence Graph

We have presented our core repair algorithm. However, we have not yet discussed

how our specification compiler determines that a generated repair algorithm termi-

nates. The specification compiler constructs a repair dependence graph 〈N, E〉 to

reason about the termination of the repair algorithm. Nodes in this graph represent

conjunctions in the DNF of the consistency constraints, repair actions, and model

definition rules. One node has a dependence on a second node if the repair compiler

may be required to performed the event represented by first node as a result of the

event represented by the second node, or if the event represented by the first node

may occurs as a result of the event represented by the second node. For example, we

say that a data structure update depends on the corresponding model repair, because

the repair algorithm may have to perform the data structure update to implement

the model repair. Note that events in an individual repair follow paths on the graph.

For example, the repair algorithm decides to repair a conjunction; then it performs

a model repair; then it implements this model repair by performing the correspond-

ing data structure update, which may change the scope of model definition rules;

and finally the repair algorithm may perform compensation updates to counteract

these scope changes. These chains of events corresponds to the paths on the repair

dependence graph that start from the model conjunction.

Edges capture dependences between the consistency constraints, repair actions,

model definition rules, and choices in the repair process. In particular, an edge may

105

denote that the repair of a constraint requires a given model repair, that the imple-

mentation of a model repair requires a given data structure update, that performing

a repair action may affect what objects (or tuples) model definition rules add to sets

(or relations), or that a repair action or change in a model definition rule’s scope may

violate a constraint. The absence of cycles in the repair dependence graph ensures

that the corresponding repair algorithm will not perform any infinite repair sequences

and therefore terminates. Section 6.5 presents a correctness argument that the ab-

sence of cycles in the repair dependence graph implies termination. Figure 6-1 is a

schema of the types of nodes and edges in the repair dependence graphs. Sections 6.1

and 6.2 discuss the nodes and edges in this figure.

/

/

1 2 12

11

5

3 4

6

7
9 10

8

/

/

Figure 6-1: Repair Dependence Graph Schema

6.1 Nodes in Repair Dependence Graph

The repair dependence graph contains the following classes of nodes:

106

• Model conjunction nodes (rectangle labeled Nij): In disjunctive normal

form, each consistency constraint Ci is of the form Ci = Qi1, ..., Qim

∨jmax

j Cij.

There is one node Nij for each conjunction Cij in the consistency constraint Ci

and an additional node Nij′ , where j′ = jmax + l, for each quantifier Qil in the

consistency constraint.

• Model repair nodes (ellipse labeled Aijkl/Ar): For each basic proposition

Cijk in each conjunction Cij there is a set of nodes
⋃

l{Aijkl} corresponding to

the model repair actions that the repair algorithm may use to repair that basic

proposition. There are also two model repair nodes Ar for each set and relation,

one to model insertions, and the other to model removals.

• Data structure update nodes (circle labeled Rrs/Rijklm): There is a set

of data structure update nodes
⋃

m{Rijklm} for each model repair node Aijkl in

the graph. These update nodes represent the concrete data structure updates

that implement the repair. There is also a similar set of nodes
⋃

s{Rrs} for each

model repair node Ar.

• Scope increase and decrease nodes (bold rectangle labeled Sw/Fw):

For each model definition rule Mw, there is an scope increase node Sw and a

scope decrease node Fw. These nodes represent the additional effects that a

data structure update may have on the model definition rules — in particular,

that a data structure update may increase the scope of a model definition rule

(i.e., cause the model definition rule to add a new object to a set or a new tuple

to a relation) or decrease the scope of a model definition rule (i.e., cause the

removal of an object from a set or a tuple from relation).

• Consequence and compensation nodes (bold ellipses labeled CwT /CwF ,

or Rwz): For each model definition rule Mw, there is a pair of rule consequence

nodes CwT and CwF that represent the consequences of increasing or decreasing

the scope of a given model definition rule. For each model definition rule there

is a set of compensation update nodes
⋃

z{Rwz} that represent compensation

107

updates that the repair algorithm may use to prevent undesired scope increases

of a model definition rule.

6.2 Edges in the Graph

The edges E in the repair dependence graph represent how model and data structure

repairs may affect other parts of the model and data structures. These edges capture

dependences between repaired conjunctions, model repairs, data structure updates,

and model definition rules. The graph contains the following classes of edges (ordered

by edge number in Figure 6-1):

1. Edges from model conjunction nodes to model repair nodes: Repair-

ing a constraint by making a model conjunction true may require the repair

algorithm to perform model repairs. These edges capture this dependence.

There is an edge 〈Nij, Aijkl〉 ∈ E from each model conjunction node Nij to each

model repair node Aijkl that may repair one of the basic propositions in the

conjunction Cij.

2. Edges from model repair nodes to model conjunction nodes: Perform-

ing a model repair may make a conjunction false, potentially requiring the repair

of a consistency constraint. These edges capture this dependence.

There is an edge 〈Aijkl, Ni′j′〉 ∈ E (or 〈Ar, Ni′j′〉 ∈ E) if the repair corresponding

to Aijkl (or Ar) may falsify the conjunction Ci′j′ or expand the quantifier scope

of the constraint containing Ci′j′ . The graph construction algorithm uses the

conditions discussed below in Section 6.3.1 to compute whether or not the repair

may falsify the conjunction.

3. Edges from model repair nodes to data structure update nodes: Im-

plementing a model repair on the concrete data structure requires the repair

algorithm to perform the corresponding concrete data structure update. These

edges capture this dependence.

108

There is an edge 〈Aijkl, Rijklm〉 ∈ E or 〈Ar, Rrs〉 ∈ E for each model repair node

Aijkl or Ar and data structure update node Rijklm or Rrs that implements the

repair.

4. Edges from data structure update nodes to model repair nodes: Data

structure updates are designed to make a model definition rule add or remove

an object (or tuple) to or from a set (or relation). Making a model definition

rule add or remove an object (or tuple) to or from a set (or relation) may

require making an inclusion constraint in the model definition rule true or false,

or adding or removing an object (or tuple) to or from a set (or relation) that

the model definition rule quantifies over. As a result, the repair algorithm may

need to perform a model repair to implement a data structure update. These

edges capture this dependence.

There is an edge 〈Rijklm, Ar〉 ∈ E (or 〈Rrs, Ar〉 ∈ E) if performing the data

structure update represented by the data structure update node Rijklm (or Rrs)

may require that the repair algorithm also perform the repair represented by

the model repair node Ar.

5. Edges from model repair nodes to increase or decrease scope nodes:

The changes that a model repair makes to the relational model may cause

model definition rules to add or remove additional objects (or tuples) from sets

(or relations). These edges capture this dependence.

The following edges characterize how model repairs may increase or decrease the

scope of quantifiers of model definition rules. There is an edge 〈Aijkl, Sw〉 ∈ E

(or 〈Ar, Sw〉 ∈ E) if the repair corresponding to Aijkl (or Ar) may increase the

scope of the model definition rule Mw. There is an edge 〈Aijkl, Fw〉 ∈ E (or

〈Ar, Fw〉 ∈ E) if the repair corresponding to Aijkl (or Ar) may decrease the

scope of the model definition rule Mw.

6. Edges from data structure update nodes to increase or decrease scope

nodes: A data structure update may change the state that other model defini-

109

tion rules depend on, causing them to add or remove objects (or tuples) to or

from sets (or relations). These edges capture this dependence.

The following edges characterize how data structure updates may increase or

decrease in the scope of quantifiers of consistency constraints or model definition

rules. 〈Rijklm, Fw〉 ∈ E (or 〈Rrs, Fw〉 ∈ E) if performing the data structure

update represented by the data structure update node Rijklm (or Rrs) may

increase or decrease the scope of the model definition rule Mw.

7. Edges from scope increase nodes to compensation nodes: Compensation

updates function to counteract increases in the scope of model definition rules;

they are performed as a result of an increase in the scope of a model definition

rule. These edges capture this dependence.

〈Sw,Rwz〉 ∈ E for each model definition rule Mw and each corresponding com-

pensation node Rwz. These edges link the scope increase or decrease node to

the compensation updates that the repair algorithm may invoke to avoid inad-

vertently increasing the scope of a model definition rule.

8. Edges from scope increase or decrease nodes to consequence nodes:

Changes in the scope of a model definition rule, if not compensated for, can

affect the scope of other model definition rules or even violate consistency con-

straints. The consequence node is a placeholder that tracks these dependences.

There is an edge from a scope node to the consequence node that tracks the

dependences of changes in the scope of a model definition rule.

〈Sw, CwT 〉 ∈ E and 〈Fw, CwF 〉 ∈ E for each model definition rule Mw. These

edges link the scope increase or decrease node to the consequences of increasing

or decreasing the scope of a model definition rule.

9. Edges from compensation update nodes to scope increase or decrease

nodes: Compensation updates change the concrete data structure. These

changes can potentially make other model definition rules true or false. These

edges capture this dependence.

110

〈Rwz, Fw′〉 ∈ E if performing the data structure update represented by the data

structure update node Rwz may decrease the scope of the model definition rule

Mw′ . 〈Rwz, Sw′〉 ∈ E if performing the data structure update represented by the

data structure update node Rwz may increase the scope of the model definition

rule Mw′ .

10. Edges from consequence nodes to scope increase or decrease nodes: If

a model definition rule changes scope, it causes objects (or tuples) to be added

to or removed from sets (or relations). These changes to the model can cause

additional changes in the scopes of model definition rules. These edges capture

this dependence.

〈CwT , Fw′〉 ∈ E (or 〈CwF , Fw′〉 ∈ E) if increasing (or decreasing) the scope of the

model definition rule Mw may decrease the scope of the model definition rule

Mw′ . 〈CwT , Sw′〉 ∈ E (or 〈CwF , Sw′〉 ∈ E) if increasing (or decreasing) the scope

of the model definition rule Mw may increase the scope of the model definition

rule Mw′ . These edges model the effects that increasing or decreasing the scope

of a model definition rule may have on other model definition rules.

11. Edges from compensation update nodes to model repair nodes: Com-

pensation updates are designed to make a model definition rule remove an ob-

ject (or tuple) from a set (or relation). Making a model definition rule remove

an object (or tuple) may require making an inclusion constraint in the model

definition rule true or false, or removing an object (or tuple) from a set (or

relation) that the model definition rule quantifies over. As a result, a compen-

sation update may need to perform a model repair. These edges capture this

dependence.

〈Rwz, Ar〉 ∈ E if performing the compensation update represented by the com-

pensation update node Rwz may require the repair algorithm to also perform

the repair represented by the model repair node Ar.

12. Edges from consequence nodes to conjunction nodes: If a model defini-

111

tion rule changes scope, it causes objects (or tuples) to be added to or removed

from sets (or relations). These changes to the model can violate consistency

constraints. These edges capture this dependence.

〈CwT , Nij〉 ∈ E if increasing the scope of the model definition rule Mw may

falsify the conjunction Cij or expand the scope of its quantifier. 〈CwF , Nij〉 ∈ E if

decreasing the scope of the model definition rule Mw may falsify the conjunction

Cij. These edges model the effects that increasing or decreasing the scope of a

model definition rule may have on consistency constraints.

6.3 Interference

The edges in the repair dependence graph characterize either the potential effects

of a repair action on the consistency constraints or what objects (or tuples) model

definition rules add to sets (or relations). To place these edges, the graph construction

algorithm must compute some basic interference relationships between repair actions

and components of the consistency constraints and definition rules.

6.3.1 Model Repair Effects

There must be an edge from a model repair node to a conjunction node if the model

repair may falsify the conjunction. The compiler uses the following procedure to

determine if a model repair for a basic proposition may falsify a conjunction:

1. Our repair system desugars the domain and range sets of relations into consis-

tency constraints as described in Section 4.4. In some cases, the repair tool is

able to determine that model repairs that add tuples to relations always use

objects from the appropriate domain or range set.

If a conjunction corresponds to a constraint that ensures that a relation is well-

formed (that objects in the tuples in the relation are in the appropriate domain

or range set) and the model repair only adds tuples to the relation that satisfy

this constraint, no edge is necessary.

112

2. If a model repair increases the size of a set (or relation) that the conjunction

quantifies over, the constraint must hold on these new bindings. To ensure this,

the repair algorithm may need to perform repairs to make a conjunction in the

DNF form of the constraint true. The graph construction algorithm must place

an edge from the model repair node to the conjunction node to represent this

dependence.

3. Consider the pair of consistency constraint for o in S, o.R=1 or o.S=2 and

for o in S, (!o.R=1) or o.S=3 where S is constrained to be a singleton set.

If the repair algorithm performs an update that sets o.S equal to 2 to satisfy

the first constraint, this implies that o.R!=1. Therefore, even though the model

repair would normally potentially violate the second constraint, the analysis is

able to determine that the model does not violate this constraint because o.R!=1

implies that the constraint is true.

In general, if the condition under which the model repair is performed ensures

that the constraint containing the conjunction is true, even in the presence in

the model repair, no edge is necessary.

4. If none of the previous rules apply, the specification compiler looks up the basic

proposition being repaired and each of the basic propositions in the conjunction

in the tables given in Figures 6-2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11,

6-12, and 6-13. If a model repair may cause any of the basic propositions in the

conjunction to be falsified, an edge must be placed from the model repair node

to that conjunction node.

Figures 6-2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-12, and 6-13 define an

interferes predicate IF that captures the effect that a given model repair action may

have on another basic proposition. This predicate returns false if the repair action

does not falsify the basic proposition and true otherwise.

These figures were developed manually by reasoning about the proposition being

repaired, the repair action, and the proposition that may be violated. The basic

insights that were used to construct these tables follow:

113

• Disjointness: If a model repair only changes sets or relations that a basic

proposition does not use, then that model repair cannot affect the basic proposi-

tion. This test appears in the figures as predicate of the form S1 = S2, R1 = R2,

U(E, S),U(V E, S), U(E, R), or U(V E, R). The function U(E, S) evaluates to

true if E depends on S.

• Type of Action: Some basic propositions can only be falsified by adding

an object (or tuple) to a set(or relation), and others can only be falsified by

removing an object (or tuple) from a set (or relation). For example, consider the

basic proposition size(S)<2. Notice that this proposition cannot be falsified

by removing objects from a set.

• Reasoning about Inequalities: Consider the effect of a model repair that

adds objects to S to satisfy the constraint size(S)=2 on the constraint size(S)<5.

This model repair will not falsify the second basic proposition because it is only

performed if the size of S is less than 2.

• Reasoning about the Maximum Size of a Set: Consider the effect of a

model repair that adds objects to S to satisfy the constraint x in S on the

constraint size(S)<5. If we can determine that the maximum size of S is less

than 5, this model repair cannot falsify the second basic proposition because

it is impossible to add more than 5 objects to S. Note that the function MS

returns the maximum size of a set or relation.

• Reasoning about Partitions: Consider a model repair that adds a tuple to

R to satisfy the constraint for o1 in S1,size(o1.R)=3. This model repair

will not falsify a second basic proposition for o2 in S2, size(o2.R)=1, if

the analysis can determine that the intersection of S1 and S2 is empty. We use

partition information to determine this, and the function NP(S1, S2) is true if

and only if that partition constraints allow an object to be a member of both

S1 and S2.

114

The definition of the interferes predicate IF uses several helper functions. The

MS function returns the maximum size of the set or relation on which the function is

evaluated. Section 6.3.4 gives the algorithm to compute this function. The function

U takes two arguments, an expression E or V E and a set or relation, and returns

true if the expression uses the given set or relation and false otherwise. The function

S takes an expression V E or a variable V and returns a set that contains all of the

objects that V E or V may reference. The function NP(S1, S2) is true if and only

if the partition constraints allow an object to be a member of both S1 and S2. The

function φ(E, V) is true if and only if E only uses on a single quantified variable V.

Addition to set S1 to satisfy size(S1)=c, size(S1)>=c, !size(S1)=c−1, or !size(S1)<=c−1.
IF(size(S2)=c′) (S1 = S2) ∧ (c′ < c)
IF(size(S2)<=c′) (S1 = S2) ∧ (c′ < c)
IF(size(S2)>=c′) false
IF(!size(S2)=c′) (S1 = S2) ∧ (c′ = c)
IF(!size(S2)<=c′) false
IF(!size(S2)>=c′) (S1 = S2) ∧ (c′ ≤ c)
IF(V in S2) false
IF(!V in S2) S1 = S2

IF(V E comp E) U(E,S1)
Addition to set S1 to satisfy V in S1.
IF(size(S2)=c′) (S1 = S2) ∧ (MS(S2) > c′)
IF(size(S2)<=c′) (S1 = S2) ∧ (MS(S2) > c′)
IF(size(S2)>=c′) false
IF(!size(S2)=c′) (S1 = S2) ∧ (MS(S2) >= c′)
IF(!size(S2)<=c′) false
IF(!size(S2)>=c′) (S1 = S2) ∧ (MS(S2) >= c′)
IF(V in S2) false
IF(!V in S2) (S1 = S2)
IF(V E comp E) U(E,S1)

Figure 6-2: Rules for computing interference from set additions

For model repair nodes that represent repairs that add or remove an object to a

set, this procedure uses the rules given in Figure 6-2 or 6-3, respectively, to deter-

mine whether the model repair may falsify a conjunction. For model repair nodes

that represent repairs that add or remove a tuple to a relation, this procedure uses

the rules given in Figures 6-4, 6-5,6-6, and 6-7, or Figures 6-8, 6-9, 6-10, and 6-11,

respectively, to determine whether the model repair may falsify a conjunction. For

115

Removal from set S1 to satisfy size(S1)=c, size(S1)<=c, !size(S1)=c+1, or !size(S1)>=c+
1.
IF(size(S2)=c′) (S1 = S2) ∧ (c′ > c)
IF(size(S2)<=c′) false
IF(size(S2)>=c′) (S1 = S2) ∧ (c′ > c)
IF(!size(S2)=c′) (S1 = S2) ∧ (c′ = c)
IF(!size(S2)<=c′) (S1 = S2) ∧ (c′ ≥ c)
IF(!size(S2)>=c′) false
IF(V in S2) S1 = S2

IF(!V in S2) false
IF(V E comp E) U(E,S1)

Removal from set S1 to satisfy !V in S1.
IF(size(S2)=c′) (S1 = S2) ∧ (c′ 6= 0)
IF(size(S2)<=c′) false
IF(size(S2)>=c′) S1 = S2

IF(!size(S2)=c′) S1 = S2

IF(!size(S2)<=c′) S1 = S2

IF(!size(S2)>=c′) false
IF(V in S2) S1 = S2

IF(!V in S2) false
IF(V E comp E) U(E,S1)

Figure 6-3: Rules for computing interference from set removals

model repair nodes that represent repairs that atomically modify a tuple in a relation,

this procedure uses the rules given in Figures 6-12 and 6-13 to determine whether the

model repair may falsify a conjunction.

If a repair changes whether a model definition rule adds an object (or tuple) to

a set (or relation), this change to the model can result in further cascading changes.

For example, a repair may cause one model definition rule to add a new object to

a set, and a second model definition rule may quantify over this set and result in

further changes to the model. There must be an edge from a model repair node

to a scope increase or decrease node if the model repair may cause the scope of the

model definition rule to increase or decrease. This can happen in one of two ways: the

model repair may change the value of an inclusion constraint in the guard of the model

definition rule or the model repair may change the scope of the model definition rule’s

quantifier. We use the same techniques that we used in the conjunction procedure to

determine whether a model repair affects the scope of a model definition rule.

116

Addition to a relation to satisfy size(V1.R1)=c, size(V1.R1)>=c, !size(V1.R1)=c − 1, or
!size(V1.R1)<=c− 1
IF(size(V2.R2)=c′) (R1 = R2) ∧ (c′ < c) ∧NP(S(V1),S(V2))
IF(size(V2.R2)<=c′) (R1 = R2) ∧ (c′ < c) ∧NP(S(V1),S(V2))
IF(size(V2.R2)>=c′) false
IF(size(V E.R2)=c′) ((R1 = R2) ∧ (c′ < c) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(size(V E.R2)<=c′) ((R1 = R2) ∧ (c′ < c) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(size(V E.R2)>=c′) false
IF(V3 in V2.R2) false
IF(V2 in V E.R2) false
IF(!size(V2.R2)=c′) (R1 = R2) ∧ (c′ = c) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)<=c′) false
IF(!size(V2.R2)>=c′) (R1 = R2) ∧ (c′ ≤ c) ∧NP(S(V1),S(V2))
IF(!size(V E.R2)=c′) ((R1 = R2) ∧ (c′ = c) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V E.R2)<=c′) false
IF(!size(V E.R2)>=c′) ((R1 = R2) ∧ (c′ ≤ c) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!V2 in V E.R2) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(V2.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2)) ∧ (c > 1)) ∨ U(E,R1)
IF(V2.R

′.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2.R
′)) ∧ (c > 1)) ∨ U(E,R1)

∨(R′ = R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V E.R′)) ∧ (c > 1)) ∨ U(E,R1)∨

(R′ = R1) ∨ U(V E, R1)
IF(R2.V2 comp E) (R1 = R2) ∨ U(E,R1)
IF(R2.V E comp E) (R1 = R2) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) R1 = R2

IF(size(R2.V2)>=c′) false
IF(size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)>=c′) false
IF(V3 in R2.V2) false
IF(V2 in V E.V2) false
IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) false
IF(!size(R2.V2)>=c′) R1 = R2

IF(!size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)<=c′) false
IF(!size(R2.V E)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(!V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
IF(!V2 in R2.V E) ((R1 = R2) ∧NP(S(V1),S(V2))) ∨ U(V E, R1)

Figure 6-4: Rules for computing interference from relation additions

117

Addition to a relation to satisfy size(V E1.R1)=c, size(V E1.R1)>=c, !size(V E1.R1)=c−1,
or !size(V E1.R1)<=c− 1
IF(size(V2.R2)=c′) (R1 = R2) ∧ (c′ < c) ∧NP(S(V E1),S(V2))
IF(size(V2.R2)<=c′) (R1 = R2) ∧ (c′ < c) ∧NP(S(V E1),S(V2))
IF(size(V2.R2)>=c′) false
IF(size(V E2.R2)=c′) ((R1 = R2) ∧ (c′ < c) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(size(V E2.R2)<=c′) ((R1 = R2) ∧ (c′ < c) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(size(V E2.R2)>=c′) false
IF(V3 in V2.R2) false
IF(V2 in V E2.R2) false
IF(!size(V2.R2)=c′) (R1 = R2) ∧ (c′ = c) ∧NP(S(V E1),S(V2))
IF(!size(V2.R2)<=c′) false
IF(!size(V2.R2)>=c′) (R1 = R2) ∧ (c′ ≤ c) ∧NP(S(V E1),S(V2))
IF(!size(V E2.R2)=c′) ((R1 = R2) ∧ (c′ = c) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!size(V E2.R2)<=c′) false
IF(!size(V E2.R2)>=c′) ((R1 = R2) ∧ (c′ ≤ c) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!V3 in V2.R2) (R1 = R2) ∧NP(S(V E1),S(V2))
IF(!V2 in V E2.R2) ((R1 = R2) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(V2.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V2)) ∧ (c > 1)) ∨ U(E,R1)
IF(V2.R

′.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V2.R
′)) ∧ (c > 1)) ∨ U(E,R1)∨

(R′ = R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V E.R′)) ∧ (c > 1)) ∨ U(E,R1)∨

(R′ = R1) ∨ U(V E2, R1)
IF(R2.V2 comp E) (R1 = R2) ∨ U(E,R1)
IF(R2.V E comp E) (R1 = R2) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) R1 = R2

IF(size(R2.V2)>=c′) false
IF(size(R2.V E2)=c′) (R1 = R2) ∨ U(V E2, R1)
IF(size(R2.V E2)<=c′) (R1 = R2) ∨ U(V E2, R1)
IF(size(R2.V E2)>=c′) false
IF(V3 in R2.V2) false
IF(V2 in V E2.V2) false
IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) false
IF(!size(R2.V2)>=c′) R1 = R2

IF(!size(R2.V E2)=c′) (R1 = R2) ∨ U(V E2, R1)
IF(!size(R2.V E2)<=c′) false
IF(!size(R2.V E2)>=c′) (R1 = R2) ∨ U(V E2, R1)
IF(!V3 in R2.V2) (R1 = R2) ∧NP(S(V E1),S(V3))
IF(!V2 in R2.V E2) ((R1 = R2) ∧NP(S(V E1),S(V2))) ∨ U(V E2, R1)

Figure 6-5: Rules for computing interference from relation additions

118

Addition to relation to satisfy V ′ in V1.R1

IF(size(V2.R2)=c′) (R1 = R2) ∧NP(S(V1),S(V2)) ∧ (MS(R2) > c′)
IF(size(V2.R2)<=c′) (R1 = R2) ∧NP(S(V1),S(V2)) ∧ (MS(R2) ≥ c′)
IF(size(V2.R2)>=c′) false
IF(size(V E.R2)=c′) ((R1 = R2) ∧NP(S(V1),S(V E)) ∧ (MS(R2) > c′)) ∨ U(V E, R1)
IF(size(V E.R2)<=c′) ((R1 = R2) ∧NP(S(V1),S(V E)) ∧ (MS(R2) ≥ c′)) ∨ U(V E, R1)
IF(size(V E.R2)>=c′) false
IF(V3 in V2.R2) false
IF(V3 in V E.R2) false
IF(!size(V2.R2)=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)<=c′) false
IF(!size(V2.R2)>=c′) (R1 = R2) ∧NP(S(V1),S(V2)) ∧ (MS(R2) ≥ c′)
IF(!size(V E.R2)=c′) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V E.R2)<=c′) false
IF(!size(V E.R2)>=c′) ((R1 = R2) ∧NP(S(V1),S(V E)) ∧ (MS(R2) ≥ c′)) ∨ U(V E, R1)
IF(!V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2)) ∧NP(S(V ′),S(V3)
IF(!V2 in V E.R2) ((R1 = R2) ∧NP(S(V1),S(V2)) ∧NP(S(V ′),S(V2)) ∨ U(V E, R1)
IF(V2.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2))) ∨ U(E,R1)
IF(V2.R

′.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2.R
′))) ∨ U(E,R1)

IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V E.R′))) ∨ U(E,R1)
IF(R2.V2 comp E) ((R1 = R2) ∧NP(S(V ′),S(V2))) ∨ U(E,R1)
IF(R2.V E comp E) ((R1 = R2) ∧NP(S(V ′),S(V2))) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) (R1 = R2) ∧NP(S(V ′),S(V2)) ∧ (MS(R2) > c′)
IF(size(R2.V2)<=c′) (R1 = R2) ∧NP(S(V ′),S(V2)) ∧ (MS(R2) > c′)
IF(size(R2.V2)>=c′) false
IF(size(R2.V E)=c′) ((R1 = R2) ∧NP(S(V ′),S(V E)) ∧ (MS(R2) > c′)) ∨ U(V E, R1)
IF(size(R2.V E)<=c′) ((R1 = R2) ∧NP(S(V ′),S(V E)) ∧ (MS(R2) > c′)) ∨ U(V E, R1)
IF(size(R2.V E)>=c′) false
IF(V3 in R2.V2) false
IF(V2 in V E.V2) false
IF(!size(R2.V2)=c′) (R1 = R2) ∧NP(S(V ′),S(V2)) ∧ (MS(R2) ≥ c′)
IF(!size(R2.V2)<=c′) false
IF(!size(R2.V2)>=c′) (R1 = R2) ∧NP(S(V ′),S(V2)) ∧ (MS(R2) ≥ c′)
IF(!size(R2.V E)=c′) ((R1 = R2) ∧NP(S(V ′),S(V E)) ∧ (MS(R2) ≥ c′)) ∨ U(V E, R1)
IF(!size(R2.V E)<=c′) false
(IF(!size(R2.V E)>=c′) ((R1 = R2) ∧NP(S(V ′),S(V E)) ∧ (MS(R2) ≥ c′)) ∨ U(V E, R1)
IF(!V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3) ∧NP(S(V ′),S(V2))
IF(!V in R2.V E) ((R1 = R2) ∧NP(S(V1),S(V2) ∧NP(S(V ′),S(V E))) ∨ U(V E, R1)

Figure 6-6: Rules for computing interference from relation additions

119

Addition to relation to satisfy V ′ in V E1.R1

IF(size(V.R2)=c′) (R1 = R2) ∧NP(S(V E1),S(V)) ∧ (MS(R2) > c′)
IF(size(V.R2)<=c′) (R1 = R2) ∧NP(S(V E1),S(V)) ∧ (MS(R2) ≥ c′)
IF(size(V.R2)>=c′) false
IF(size(V E2.R2)=c′) ((R1 = R2) ∧NP(S(V E1),S(V E2)) ∧ (MS(R2) > c′)) ∨ U(V E2, R1)
IF(size(V E2.R2)<=c′) ((R1 = R2) ∧NP(S(V E1),S(V E2)) ∧ (MS(R2) ≥ c′)) ∨ U(V E2, R1)
IF(size(V E2.R2)>=c′) false
IF(V3 in V.R2) false
IF(V3 in V E2.R2) false
IF(!size(V.R2)=c′) (R1 = R2) ∧NP(S(V E1),S(V))
IF(!size(V.R2)<=c′) false
IF(!size(V.R2)>=c′) (R1 = R2) ∧NP(S(V E1),S(V)) ∧ (MS(R2) ≥ c′)
IF(!size(V E2.R2)=c′) ((R1 = R2) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!size(V E2.R2)<=c′) false
IF(!size(V E2.R2)>=c′) ((R1 = R2) ∧NP(S(V E1),S(V E2)) ∧ (MS(R2) ≥ c′)) ∨ U(V E2, R1)
IF(!V3 in V.R2) (R1 = R2) ∧NP(S(V E1),S(V)) ∧NP(S(V ′),S(V3)
IF(!V in V E2.R2) ((R1 = R2) ∧NP(S(V E1),S(V)) ∧NP(S(V ′),S(V)) ∨ U(V E2, R1)
IF(V.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V))) ∨ U(E,R1)
IF(V.R′.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V.R′))) ∨ U(E,R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V E.R′))) ∨ U(E,R1)
IF(R2.V2 comp E) ((R1 = R2) ∧NP(S(V ′),S(V2))) ∨ U(E,R1)
IF(R2.V E comp E) ((R1 = R2) ∧NP(S(V ′),S(V2))) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V)=c′) (R1 = R2) ∧NP(S(V ′),S(V)) ∧ (MS(R2) > c′)
IF(size(R2.V)<=c′) (R1 = R2) ∧NP(S(V ′),S(V)) ∧ (MS(R2) > c′)
IF(size(R2.V)>=c′) false
IF(size(R2.V E2)=c′) ((R1 = R2) ∧NP(S(V ′),S(V E2)) ∧ (MS(R2) > c′)) ∨ U(V E2, R1)
IF(size(R2.V E2)<=c′) ((R1 = R2) ∧NP(S(V ′),S(V E2)) ∧ (MS(R2) > c′)) ∨ U(V E2, R1)
IF(size(R2.V E2)>=c′) false
IF(V3 in R2.V) false
IF(V in V E2.V) false
IF(!size(R2.V)=c′) (R1 = R2) ∧NP(S(V ′),S(V)) ∧ (MS(R2) ≥ c′)
IF(!size(R2.V)<=c′) false
IF(!size(R2.V)>=c′) (R1 = R2) ∧NP(S(V ′),S(V)) ∧ (MS(R2) ≥ c′)
IF(!size(R2.V E2)=c′) ((R1 = R2) ∧NP(S(V ′),S(V E2)) ∧ (MS(R2) ≥ c′)) ∨ U(V E2, R1)
IF(!size(R2.V E2)<=c′) false
(IF(!size(R2.V E2)>=c′) ((R1 = R2) ∧NP(S(V ′),S(V E2)) ∧ (MS(R2) ≥ c′)) ∨ U(V E2, R1)
IF(!V3 in R2.V) (R1 = R2) ∧NP(S(V E1),S(V3) ∧NP(S(V ′),S(V))
IF(!V in R2.V E2) ((R1 = R2) ∧NP(S(V E1),S(V) ∧NP(S(V ′),S(V E2))) ∨ U(V E2, R1)

Figure 6-7: Rules for computing interference from relation additions

120

Removal from a relation to satisfy size(V1.R1)=c, size(V1.R1)<=c, !size(V1.R1)=c + 1, or
!size(V1.R1)>=c + 1
IF(size(V2.R2)=c′) (R1 = R2) ∧ (c′ > c) ∧NP(S(V1),S(V2))
IF(size(V2.R2)<=c′) false
IF(size(V2.R2)>=c′) (R1 = R2) ∧ (c′ > c) ∧NP(S(V1),S(V2))
IF(size(V E.R2)=c′) ((R1 = R2) ∧ (c′ > c) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(size(V E.R2)<=c′) false
IF(size(V E.R2)>=c′) ((R1 = R2) ∧ (c′ > c) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))
IF(V2 in V E.R2) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V2.R2)=c′) (R1 = R2) ∧ (c′ = c) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)<=c′) (R1 = R2) ∧ (c′ ≥ c) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)>=c′) false
IF(!size(V E.R2)=c′) ((R1 = R2) ∧ (c′ = c) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V E.R2)<=c′) ((R1 = R2) ∧ (c′ ≥ c) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V E.R2)>=c′) false
IF(!V3 in V2.R2) false
IF(!V2 in vexpr.R2) false
IF(V2.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2))) ∨ U(E,R1)
IF(V2.R

′.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2.R
′))) ∨ U(E,R1)

IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V E.R′))) ∨ U(E,R1)
IF(R2.V2 comp E) (R1 = R2) ∨ U(E,R1)
IF(R2.V E comp E) (R1 = R2) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) false
IF(size(R2.V2)>=c′) R1 = R2

IF(size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)<=c′) false
IF(size(R2.V E)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
IF(V2 in R2.V E) ((R1 = R2) ∧NP(S(V1),S(V2))) ∨ U(V E, R1)
IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) R1 = R2

IF(!size(R2.V2)>=c′) false
IF(!size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)>=c′) false
IF(!V3 in R2.V2) false
IF(!V2 in R2.V E) false

Figure 6-8: Rules for computing interference from relation removals

121

Removal from a relation to satisfy size(V E1.R1)=c, size(V E1.R1)<=c,
!size(V E1.R1)=c + 1, or !size(V E1.R1)>=c + 1
IF(size(V.R2)=c′) (R1 = R2) ∧ (c′ > c) ∧NP(S(V E1),S(V))
IF(size(V.R2)<=c′) false
IF(size(V.R2)>=c′) (R1 = R2) ∧ (c′ > c) ∧NP(S(V E1),S(V))
IF(size(V E2.R2)=c′) ((R1 = R2) ∧ (c′ > c) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(size(V E2.R2)<=c′) false
IF(size(V E2.R2)>=c′) ((R1 = R2) ∧ (c′ > c) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(V3 in V.R2) (R1 = R2) ∧NP(S(V E1),S(V))
IF(V in V E2.R2) ((R1 = R2) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!size(V.R2)=c′) (R1 = R2) ∧ (c′ = c) ∧NP(S(V E1),S(V))
IF(!size(V.R2)<=c′) (R1 = R2) ∧ (c′ ≥ c) ∧NP(S(V E1),S(V))
IF(!size(V.R2)>=c′) false
IF(!size(V E2.R2)=c′) ((R1 = R2) ∧ (c′ = c) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!size(V E2.R2)<=c′) ((R1 = R2) ∧ (c′ ≥ c) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!size(V E2.R2)>=c′) false
IF(!V2 in V.R2) false
IF(!V in vexpr.R2) false
IF(V.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V))) ∨ U(E,R1)
IF(V.R′.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V.R′))) ∨ U(E,R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V E.R′))) ∨ U(E,R1)
IF(R2.V comp E) (R1 = R2) ∨ U(E,R1)
IF(R2.V E2 comp E) (R1 = R2) ∨ U(V E2, R1) ∨ U(E,R1)
IF(size(R2.V)=c′) R1 = R2

IF(size(R2.V)<=c′) false
IF(size(R2.V)>=c′) R1 = R2

IF(size(R2.V E2)=c′) (R1 = R2) ∨ U(V E2, R1)
IF(size(R2.V E2)<=c′) false
IF(size(R2.V E2)>=c′) (R1 = R2) ∨ U(V E2, R1)
IF(V3 in R2.V) (R1 = R2) ∧NP(S(V E1),S(V3))
IF(V in R2.V E2) ((R1 = R2) ∧NP(S(V E1),S(V))) ∨ U(V E2, R1)
IF(!size(R2.V)=c′) R1 = R2

IF(!size(R2.V)<=c′) R1 = R2

IF(!size(R2.V)>=c′) false
IF(!size(R2.V E2)=c′) (R1 = R2) ∨ U(V E2, R1)
IF(!size(R2.V E2)<=c′) (R1 = R2) ∨ U(V E2, R1)
IF(!size(R2.V E2)>=c′) false
IF(!V3 in R2.V) false
IF(!V in R2.V E2) false

Figure 6-9: Rules for computing interference from relation removals

122

Removal from a relation to satisfy !V ′ in V1.R1.

IF(size(V2.R2)=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(size(V2.R2)<=c′) false
IF(size(V2.R2)>=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(size(V E.R2)=c′) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(size(V E.R2)<=c′) false
IF(size(V E.R2)>=c′) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))
IF(V2 in V E.R2) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V2.R2)=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)<=c′) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)>=c′) false
IF(!size(V E.R2)=c′) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V E.R2)<=c′) ((R1 = R2) ∧NP(S(V1),S(V E)) ∨ U(V E, R1)
IF(!size(V E.R2)>=c′) false
IF(!V3 in V2.R2) false
IF(!V2 in V E.R2) false
IF(V2.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2))) ∨ U(E,R1)
IF(V2.R

′.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V2.R
′))) ∨ U(E,R1)

IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V1),S(V E.R′))) ∨ U(E,R1)
IF(R2.V2 comp E) ((R1 = R2) ∧NP(S(V ′),S(V2))) ∨ U(E,R1)
IF(R2.V E comp E) ((R1 = R2) ∧NP(S(V ′),S(V2))) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(size(R2.V2)<=c′) false
IF(size(R2.V2)>=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(size(R2.V E)=c′) ((R1 = R2) ∧NP(S(V ′),S(V E))) ∨ U(V E, R1)
IF(size(R2.V E)<=c′) false
IF(size(R2.V E)>=c′) ((R1 = R2) ∧NP(S(V ′),S(V E))) ∨ U(V E, R1)
IF(V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
IF(V2 in R2.V E) ((R1 = R2) ∧NP(S(V1),S(V2))) ∨ U(V E, R1)
IF(!size(R2.V2)=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(!size(R2.V2)<=c′) (R1 = R2) ∧NP(S(V ′),S(V2))
IF(!size(R2.V2)>=c′) false
IF(!size(R2.V E)=c′) ((R1 = R2) ∧NP(S(V ′),S(V E))) ∨ U(V E, R1)
IF(!size(R2.V E)<=c′) ((R1 = R2) ∧NP(S(V ′),S(V E))) ∨ U(V E, R1)
IF(!size(R2.V E)>=c′) false
IF(!V3 in R2.V2) false
IF(!V2 in R2.V E) false

Figure 6-10: Rules for computing interference from relation removals

123

Removal from a relation to satisfy !V ′ in V E1.R1.

IF(size(V.R2)=c′) (R1 = R2) ∧NP(S(V E1),S(V))
IF(size(V.R2)<=c′) false
IF(size(V.R2)>=c′) (R1 = R2) ∧NP(S(V E1),S(V))
IF(size(V E2.R2)=c′) ((R1 = R2) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(size(V E2.R2)<=c′) false
IF(size(V E2.R2)>=c′) ((R1 = R2) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(V2 in V.R2) (R1 = R2) ∧NP(S(V E1),S(V))
IF(V in V E2.R2) ((R1 = R2) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!size(V.R2)=c′) (R1 = R2) ∧NP(S(V E1),S(V))
IF(!size(V.R2)<=c′) (R1 = R2) ∧NP(S(V E1),S(V))
IF(!size(V.R2)>=c′) false
IF(!size(V E2.R2)=c′) ((R1 = R2) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!size(V E2.R2)<=c′) ((R1 = R2) ∧NP(S(V E1),S(V E2))) ∨ U(V E2, R1)
IF(!size(V E2.R2)>=c′) false
IF(!V2 in V.R2) false
IF(!V in V E2.R2) false
IF(V.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V))) ∨ U(E,R1)
IF(V.R′.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V.R′))) ∨ U(E,R1)
IF(V E.R′.R2 comp E) ((R1 = R2) ∧NP(S(V E1),S(V E.R′))) ∨ U(E,R1)
IF(R2.V2 comp E) ((R1 = R2) ∧NP(S(V ′),S(V2))) ∨ U(E,R1)
IF(R2.V E comp E) ((R1 = R2) ∧NP(S(V ′),S(V2))) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V)=c′) (R1 = R2) ∧NP(S(V ′),S(V))
IF(size(R2.V)<=c′) false
IF(size(R2.V)>=c′) (R1 = R2) ∧NP(S(V ′),S(V))
IF(size(R2.V E2)=c′) ((R1 = R2) ∧NP(S(V ′),S(V E2))) ∨ U(V E2, R1)
IF(size(R2.V E2)<=c′) false
IF(size(R2.V E2)>=c′) ((R1 = R2) ∧NP(S(V ′),S(V E2))) ∨ U(V E2, R1)
IF(V2 in R2.V) (R1 = R2) ∧NP(S(V E1),S(V2))
IF(V in R2.V E2) ((R1 = R2) ∧NP(S(V E1),S(V))) ∨ U(V E2, R1)
IF(!size(R2.V)=c′) (R1 = R2) ∧NP(S(V ′),S(V))
IF(!size(R2.V)<=c′) (R1 = R2) ∧NP(S(V ′),S(V))
IF(!size(R2.V)>=c′) false
IF(!size(R2.V E2)=c′) ((R1 = R2) ∧NP(S(V ′),S(V E2))) ∨ U(V E2, R1)
IF(!size(R2.V E2)<=c′) ((R1 = R2) ∧NP(S(V ′),S(V E2))) ∨ U(V E2, R1)
IF(!size(R2.V E2)>=c′) false
IF(!V2 in R2.V) false
IF(!V in R2.V E2) false

Figure 6-11: Rules for computing interference from relation removals

124

Modification to a relation to satisfy V1.R1 comp1 E1

IF(size(V2.R2)=c′) (R1 = R2) ∧ (c′ 6= 1) ∧NP(S(V1),S(V2))
IF(size(V2.R2)<=c′) (R1 = R2) ∧ (c′ = 0) ∧NP(S(V1),S(V2))
IF(size(V2.R2)>=c′) (R1 = R2) ∧ (c′ > 1) ∧NP(S(V1),S(V2))
IF(size(V E.R2)=c′) ((R1 = R2) ∧ (c′ 6= 1) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(size(V E.R2)<=c′) ((R1 = R2) ∧ (c′ = 0) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(size(V E.R2)>=c′) ((R1 = R2) ∧ (c′ > 1) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))
IF(V2 in V E.R2) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V2.R2)=c′) (R1 = R2) ∧ (c′ = 1) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)<=c′) (R1 = R2) ∧ (c′ ≥ 1) ∧NP(S(V1),S(V2))
IF(!size(V2.R2)>=c′) (R1 = R2) ∧ (c′ ≤ 1) ∧NP(S(V1),S(V2))
IF(!size(V E.R2)=c′) ((R1 = R2) ∧ (c′ = 1) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V E.R2)<=c′) ((R1 = R2) ∧ (c′ ≥ 1) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!size(V E.R2)>=c′) ((R1 = R2) ∧ (c′ ≤ 1) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(!V3 in V2.R2) (R1 = R2) ∧NP(S(V1),S(V2))
IF(!V2 in V E.R2) ((R1 = R2) ∧NP(S(V1),S(V E))) ∨ U(V E, R1)
IF(V2.R2 comp2 E2) (((comp1 6= comp2) ∨ (E1 6= E2[V2/V1]) ∨ φ(E1, V1) ∨ φ(E2, V2))∧

(R1 = R2) ∧NP(S(V1),S(V2))) ∨ U(E2, R1)
IF(V2.R

′.R2 comp2 E2) ((R1 = R2) ∧NP(S(V1),S(V2.R
′))) ∨ U(E2, R1) ∨ (R1 = R′)

IF(V E.R′.R2 comp2 E2) ((R1 = R2) ∧NP(S(V1),S(V E.R′))) ∨ U(E2, R1) ∨ (R1 = R′)∨
U(V E, R1)

IF(R2.V2 comp E) (R1 = R2) ∨ U(E,R1)
IF(R2.V E comp E) (R1 = R2) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) R1 = R2

IF(size(R2.V2)>=c′) R1 = R2

IF(size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
IF(V3 in R2.V E) ((R1 = R2) ∧NP(S(V1),S(V3))) ∨ U(V E, R1)
IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) R1 = R2

IF(!size(R2.V2)>=c′) R1 = R2

IF(!size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(!V3 in R2.V2) (R1 = R2) ∧NP(S(V1),S(V3))
IF(!V3 in R2.V E) ((R1 = R2) ∧NP(S(V1),S(V3))) ∨ U(V E, R1)

Figure 6-12: Rules for computing interference from relation modifications

125

Modification to a relation to satisfy V1.R
′
1...R

′
n.R1 comp1 E1

IF(size(V2.R2)=c′) (R1 = R2) ∧ (c′ 6= 1) ∧NP(S(V1.R
′
1...R

′
n),S(V2))

IF(size(V2.R2)<=c′) (R1 = R2) ∧ (c′ = 0) ∧NP(S(V1.R
′
1...R

′
n),S(V2))

IF(size(V2.R2)>=c′) (R1 = R2) ∧ (c′ > 1) ∧NP(S(V1.R
′
1...R

′
n),S(V2))

IF(size(V E.R2)=c′) ((R1 = R2) ∧ (c′ 6= 1) ∧NP(S(V1.R
′
1...R

′
n),S(V E)))∨

U(V E, R1)
IF(size(V E.R2)<=c′) ((R1 = R2) ∧ (c′ = 0) ∧NP(S(V1.R

′
1...R

′
n),S(V E)))∨

U(V E, R1)
IF(size(V E.R2)>=c′) ((R1 = R2) ∧ (c′ > 1) ∧NP(S(V1.R

′
1...R

′
n),S(V E)))∨

U(V E, R1)
IF(V3 in V2.R2) (R1 = R2) ∧NP(S(V1.R

′
1...R

′
n),S(V2))

IF(!size(V2.R2)=c′) (R1 = R2) ∧ (c′ = 1) ∧NP(S(V1.R
′
1...R

′
n),S(V2))

IF(!size(V2.R2)<=c′) (R1 = R2) ∧ (c′ ≥ 1) ∧NP(S(V1.R
′
1...R

′
n),S(V2))

IF(!size(V2.R2)>=c′) (R1 = R2) ∧ (c′ ≤ 1) ∧NP(S(V1.R
′
1...R

′
n),S(V2))

IF(!size(V E.R2)=c′) ((R1 = R2) ∧ (c′ = 1) ∧NP(S(V1.R
′
1...R

′
n),S(V E)))∨

U(V E, R1)
IF(!size(V E.R2)<=c′) ((R1 = R2) ∧ (c′ ≥ 1) ∧NP(S(V1.R

′
1...R

′
n),S(V E)))∨

U(V E, R1)
IF(!size(V E.R2)>=c′) ((R1 = R2) ∧ (c′ ≤ 1) ∧NP(S(V1.R

′
1...R

′
n),S(V E)))∨

U(V E, R1)
IF(!V3 in V2.R2) (R1 = R2) ∧NP(S(V1.R

′
1...R

′
n),S(V2))

IF(!V2 in V E.R2) ((R1 = R2) ∧NP(S(V1.R
′
1...R

′
n),S(V E))) ∨ U(V E, R2)

IF(V2.R2 comp2 E2) ((R1 = R2) ∧NP(S(V1.R
′
1...R

′
n),S(V2))) ∨ U(E2, R1)

IF(V2.R
′′
1 ...R

′′
n′ .R2 comp2 E2) (((comp1 6= comp2) ∨ (E1 6= E2[V2/V1]) ∨ φ(E1, V1) ∨ φ(E2, V2)∨

(n′ 6= n) ∨ (R′
1 6= R′′

1) ∨ ... ∨ (R′
n 6= R′′

n)) ∧ (R1 = R2)∧
NP(S(V1.R

′
1...R

′
n),S(V2.R

′′
1 ...R

′′
n′))) ∨ U(E2, R1) ∨ (R′′

1 = R1)∨
... ∨ (R′′

n′ = R1)
IF(R2.V2 comp E) (R1 = R2) ∨ U(E,R1)
IF(R2.V E comp E) (R1 = R2) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) R1 = R2

IF(size(R2.V2)>=c′) R1 = R2

IF(size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(V3 in R2.V2) (R1 = R2) ∧NP(S(V1.R

′
1...R

′
n),S(V3))

IF(V2 in R2.V E) ((R1 = R2) ∧NP(S(V1.R
′
1...R

′
n),S(V2))) ∨ U(V E, R1)

IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) R1 = R2

IF(!size(R2.V2)>=c′) R1 = R2

IF(!size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(!V3 in R2.V2) (R1 = R2) ∧NP(S(V1.R

′
1...R

′
n),S(V3))

IF(!V2 in R2.V E) ((R1 = R2) ∧NP(S(V1.R
′
1...R

′
n),S(V2))) ∨ U(V E, R1)

Figure 6-13: Rules for computing interference from relation modifications

126

6.3.2 Data Structure and Compensation Updates

Performing a data structure update modifies the concrete data structure. In addi-

tion to the model repair that the update is designed to implement, the update may

cause additional unintended increases or decreases in the scopes of the model defini-

tion rules. The edges from the model repair node already capture the dependences

resulting from the intended model repair. We use edges from the data structure or

compensation update node to capture these additional effects that a data structure

or compensation update may have on the scopes of other model definition rules.

The compiler uses a rule-based procedure to determine whether a data structure

update has any additional effects. The default rule is that updating a field f in

the concrete data structures may either increase or decrease the scope of any model

definition rule that uses f, requiring an insertion of an edge from the update node

to the scope increase or decrease node for the model definition rule in the repair

dependence graph. The algorithm implements exceptions to this rule (and omits

the corresponding edges in these cases) for the intended effect of the data structure

update, initial additions to a set, updates that affect only a single binding of a model

definition rule, and recursive data structures.

• Initial addition: The specification compiler determines that an update adds

the first element to a previously empty set, then the update does not decrease

the scope of any model definition rule that may add an object to that set.

A similar rule applies to relations. Consider, for example, a model definition rule

with an inclusion constraint of the form 〈V, FE〉 and an update that adds the

tuple 〈o1, o2〉. If the specification compiler determines that an update adds the

first object to the image of a given object under the relation, and the updated

fields or array elements can be determined to be used only by the quantifier

binding where V = o1, then the update does not cause any scope decreases for

that model definition rule.

• Updates to newly allocated objects: An update that only writes to a newly

allocated object does not decrease the scope of any model definition rule.

127

• Self Propagation: Consider an update intended to add an object (or tuple)

to a set (or relation), or an update that directly modifies the value of a tuple in

a relation. If the state updated by the data structure update is only referenced

by a single quantifier binding of the model definition rule used to construct

the update, then the update does not further increase the scope of that model

definition rule. Similar reasoning holds for the cause of decreasing the scope of

a model definition rule.

Consider an update that performs an atomic modify operation. If the state

updated by the data structure update is only referenced by a single quantifier

binding of the model definition rule used to construct the update, then the

update does not further increase or decrease the scope of that model definition

rule.

• Recursive data structures: Consider an update that adds or removes an ob-

ject to a recursive data structure. For such a recursive data structure, the model

definition rules typically contain a base case rule of the form for V ′ in S ′, G ⇒

FE in S and a recursive case rule of the form for V in S, G′ ⇒ FE ′ in S.

If the model definition rule for V in S,G′ ⇒ FE ′ in S has a guard G′ which

contains only propositions of the form V.field = E and the base case model

definition rule does not quantify over any set, then the update does not increase

or decrease the scope of this model definition rule or the base case model defini-

tion rule. Consider an addition or removal update for a recursive data structure.

If the model definition rule for V in S, G′ ⇒ FE ′ in S has a guard G′ that

contains only propositions of the form V.field = E and the base case model

definition rule for V ′ in S ′, G ⇒ FE in S has a guard G that contains only

propositions of the form V ′.field = E, then the update does not increase or

decrease the scope of this model definition rule or the base case model definition

rule.

• V.field = V does not falsify !V.field = NULL: If an update satisfies the

proposition V.field = V where V is a quantification variable, then the update

128

does not increase the scope of any model definition rule through the proposition

V.field = NULL. The update also does not decrease the scope of any model

definition rule that contains the proposition !V.field = NULL.

• V.field = NULL does not falsify !V.field = V: If an update satisfies the

proposition V.field = NULL, then the update does not increase the scope

of any model definition rule through the proposition V.field = V ′ and does

not decrease the scope of any model definition rule through the proposition

!V.field = V ′.

• V.field = E does not falsify V.field = E and does not satisfy !V.field =

E: If an update satisfies the proposition V.field = E where E depends solely

on V and globals, then the update does not increase the scope of any model

definition rule through the proposition !V.field = E and does not decrease the

scope of any model definition rule through the proposition V.field = E.

• FE.field = E does not falsify FE.field = E and does not satisfy

!FE.field = E: If an update satisfies the proposition FE.field = E

where E depends solely on V and globals, and FE does not contain any pointer

dereferences, then the update does not increase the scope of any model definition

rule through the proposition !FE.field = E and does not decrease the scope

of any model definition rule through the proposition FE.field = E.

• V.field[E1] = E2 does not falsify V.field[E1] = E2 and does not satisfy

!V.field[E1] = E2: If an update satisfies the proposition V.field[E1] = E2

where E1 and E2 depend solely on V and globals, and E1 does not contain any

dereferences, then the update does not increase the scope of any model definition

rule through the proposition !V.field[E1] = E2 and does not decrease the scope

of any model definition rule through the proposition V.field[E1] = E2.

• FE.field[E1] = E2 does not falsify FE.field[E1] = E2 and does

not satisfy !FE.field[E1] = E2: If an update satisfies the proposition

FE.field[E1] = E2 where E1 and E2 depend solely on V and globals, E1 does

129

not contain any dereferences, and FE does not contain any pointer dereferences,

then the update does not increase the scope of any model definition rule through

the proposition !FE.field[E1] = E2 and does not decrease the scope of any

model definition rule through the proposition FE.field[E1] = E2.

6.3.3 Scope Increases and Decreases

Increases or decreases in the scope of a model definition rule may change the abstract

model. In particular, if the change in scope of a model definition rule causes an object

(or tuple) to be added to or removed from a set (or relation), the resulting change

in the model may falsify consistency constraints that depend on the set (or relation)

or cause additional changes in the scopes of other model definition rules. The repair

dependence graph contains edges that account for these possibilities.

The following rules determine whether a change in scope represented by one scope

increase or decrease node may cause a change in scope represented by a second scope

increase or decrease node: increases in the scope of a model definition rule that

constructs a set (or relation) may increase the scope of any model definition rule

that quantifies over the set (or relation) or includes a non-negated guard that tests

membership in the same set (or relation). Increases in the scope of a model definition

rule that constructs a set (or relation) may decrease the scope of any model definition

rule that includes a negated guard that tests membership in the same set (or relation).

Decreases in the scope of a model definition rule that constructs a set (or relation)

may decrease the scope of any model definition rule that quantifies over the set (or

relation) or includes a non-negated guard that tests membership in the same set (or

relation). Decreases in the scope of a model definition rule that constructs a set (or

relation) may increase the scope of any model definition rule that includes a negated

guard that tests membership in the same set (or relation).

130

Increase in the scope of a model definition rule that constructs set S1.
IF(size(S2)=c′) S1 = S2

IF(size(S2)<=c′) S1 = S2

IF(size(S2)>=c′) false
IF(!size(S2)=c′) S1 = S2

IF(!size(S2)<=c′) false
IF(!size(S2)>=c′) S1 = S2

IF(V in S2) false
IF(!V in S2) S1 = S2

V E = E U(E,S1)
Decrease in the scope of a model definition rule that constructs set S1.
IF(size(S2)=c′) S1 = S2

IF(size(S2)<=c′) false
IF(size(S2)>=c′) S1 = S2

IF(!size(S2)=c′) S1 = S2

IF(!size(S2)<=c′) S1 = S2

IF(!size(S2)>=c′) false
IF(V in S2) S1 = S2

IF(!V in S2) false
V E = E U(E,S1)

Figure 6-14: Rules for computing interference from model definition rule scope
changes

6.3.4 Computing Upper Bounds on the Sizes of Sets and

Relations

The algorithm for constructing the repair dependence graph can use upper bounds on

the sizes of sets to improve the precision of the repair dependence graph. For example,

consider the constraint for a in A, for b in B, b.R=a.R’, where A has at most

one element by construction. If the specification compiler is able to determine that

the maximum size of A is 1, it can show that repairs of the relation R do not falsify

other bindings of the same constraint. The specification compiler contains an analysis

to compute conservative upper bounds on the sizes of the sets and the relations.

The analysis begins by assuming that all sets and relations are empty. Then for

each set (or relation), the analysis iterates through all of the model definition rules

that may add objects (or tuples) to the respective set (or relation). The analysis looks

up the sizes of the sets, relations, or ranges that the variables in the model definition

rule quantify over. The analysis then computes that the size of the set (or relation)

131

that the model definition rules adds objects (or tuples) to is conservatively bound by

the number of variable bindings of all the model definition rules that may add objects

(or tuples) to that set (or relation). To guarantee termination of this algorithm, if the

computed size of a set or a relation exceeds a fixed bound, the analysis conservatively

assumes that this set or relation may be unbounded in size. Without this bound

mechanism, the analysis would run forever on model definition rules that traverse

unbounded linked data structures. The algorithm continues this computation until it

reaches a fixed point.

Sometimes it is useful to define a set that contains the object at the end of a

linked list. We would like the size analysis to be able to compute accurate bounds

for such sets. To do this the analysis looks for sets (or relations) that are constructed

by a set of model definition rules that add a finite number of objects (or tuples) to a

set (or relation) and a single recursively defined model definition rule that quantifies

over that set (or relation) and potentially adds a single object (or tuple) to that set

(or relation) for each object (or tuple) in that set (or relation). Then the analysis

looks for other model definition rules that quantify over the same set (or relation). If

the guards of these model definition rules are mutually exclusive with the recursively

defined model definition rule, then the number of bindings that these model definition

rules can have for that set (or relation) is equal to the number of objects (or tuples)

added to the set (or relation) by the non-recursively defined model definition rules.

Intuitively, the analysis exploits the fact that the number of ends for linked lists is at

most equal to the number of beginnings for linked lists. Determining that a set which

contains the last object in a linked list has at most one element allows our system to

repair pointers to the end of linked lists.

6.4 Behavior of the Generated Repair Algorithms

The repair dependence graph captures all possible behaviors of the generated repair

algorithm. The developer can discover all of the possible ways that the repair algo-

rithm may satisfy a constraint by examining the corresponding conjunction nodes. In

132

particular, each conjunction node represents a conjunction in the disjunctive normal

form of a constraint that the repair algorithm may satisfy to repair a violation of

that constraint. The model repair nodes represent model repairs (such as adding an

object to a set) that the repair algorithm may perform to satisfy the individual basic

propositions making up a conjunction. By examining these nodes, the developer can

discover what model repairs the repair algorithm may perform. Finally, the update

nodes tell the developer how the repair algorithm may implement a model repair. For

each update node, the specification compiler outputs a corresponding description that

lists the write operations (both the field or array element to be written to and the

value written) that the repair algorithm performs. Furthermore, the edges capture

any potential effects of the repair actions.

6.5 Termination

By construction, the edges in the graph capture all of the repair dependences of the

repair algorithm. As a result, the transitive closure of the edges from a conjunc-

tion node captures all of the possible effects of repairing that model conjunction.

Intuitively, any possible infinite repair sequence must therefore show up as a cycle.

If the repair dependence graph is acyclic with the exception of cycles that solely

contain scope decrease and consequence nodes, cycles that solely contain scope in-

crease and consequence nodes, or cycles that are not reachable from the model con-

junction nodes then the corresponding repair algorithm terminates. 1 The specifica-

tion compiler may prune model conjunction nodes, data structure update nodes, con-

sequence nodes, and compensation update nodes to satisfy these cyclity constraints.

The generated repair algorithm never performs the repair actions that correspond

to deleted nodes. The final graph must satisfy the following conditions in order to

ensure that a repair exists for any violated constraint:

1Note that these cycles do not affect termination as no work is associated with scope decrease
cycles, scope increase cycles can only discover as many objects as exist in the (finite) heap, and the
actions in unreachable cycles are never used.

133

1. There is at least one model conjunction node for each constraint in the model.

2. Each model repair node has at least one edge to a data structure update.

3. Each scope increase or decrease node has at least one edge to a consequence or

compensation update node.

Theorem: If the repair dependence graph for a given specification is acyclic with

the exception of cycles that contain only scope decrease and consequence nodes,

cycles that contain only scope increase and consequence nodes, or cycles that are not

reachable from the model conjunction nodes and the graph satisfies the preceding

three conditions, then the repair algorithm will terminate.

We separate the correctness argument of termination into two parts: the first part

shows that the concrete implementation of each model repair action terminates, and

the second part shows that the repair of the abstract model using these model repair

actions terminates.

6.5.1 Individual Model Repairs Terminate

Since a model repair action is always completed before the next model repair action

starts, the repair algorithm can only perform repair actions that are reachable in

the repair graph from the model repair node without traversing a model conjunction

node.

This reachable subgraph contains the following classes of nodes: model repair

nodes, data structure update nodes, scope increase or decrease nodes, consequence

nodes, and compensation update nodes. As a result of the restrictions on cycles in

the complete graph, strongly connected components in this subgraph can consist of: a

single model repair node, a single data structure update node, a single compensation

update node, a set of scope increase and consequence nodes, or a set of scope decrease

and consequence nodes. After the repair algorithm performs the initial data structure

updates (which trivially terminate), it only performs operations for the compensation

update nodes.

134

It is clear that individual model repair actions terminate. Consider the strongly

connected components of the subgraph in topologically sorted order. Note that while

it is possible that a strongly connected component to contain more than one node,

the restrictions on cycles ensure that such sets of nodes do not represent any actual

work. Once the first compensation update node is used to prevent all of the initial

undesired increases in the scope of that rule, no further scope increases due to that

rule will occur (otherwise there would be an incoming edge to this node). Once the

first compensation update node has been finished, no further activations of the next

rule will occur, and so forth.

Since individual model repairs terminate, any infinite repair chains must involve

infinitely many model repairs.

6.5.2 Repair Terminates

Now that we have shown that individual model repairs terminate, we construct a new

graph that summarizes only the dependences between model conjunction nodes. This

graph is the transitive closure of the repair dependence graph restricted to the model

conjunction nodes. By construction, there is an edge between two nodes if and only

if repairing the first conjunction may falsify the second conjunction. The absence of

undesirable cycles in the repair dependency graph ensures that this new graph has no

cycles. We now show by structural induction that the absence of cycles in this new

graph ensures that all repairs terminate.

Correctness Argument: (Structural induction).

(Base Case:) The base case, an acyclic graph with ’0’ nodes, terminates because there

are no violated conjunctions.

(Induction Step:) We assume that repairs terminate on all acyclic graphs of size k or

less. We must show that all repairs terminate for an acyclic graph of size k + 1.

Since the graph is acyclic, it must contain a node n with no incoming edges.

Furthermore, all nodes corresponding to the same model constraint have no incoming

edges arising from a possible quantifier scope expansion. Otherwise, the node n would

have a similar incoming edge as it shares the same quantifiers with the other nodes

135

from the same constraint. As a result, the repair algorithm will not add objects (or

tuples) to the sets (or relations) that the conjunction quantifies over. Because there

are no incoming edges to node n, the algorithm repairs each quantifier binding for n at

most once — once the node is satisfied for a given quantifier binding, no other repair

will falsify it. Therefore, the conjunction represented by node n may only be repaired

a number of times equal to the number of quantifier bindings for the constraint that

the conjunction appears in.

By the induction hypothesis, repairs on acyclic graphs of size k terminate. There-

fore, after each repair of node n the algorithm either eventually repairs all violations

of conjunctions corresponding to the other k nodes (leaving only violations of the

conjunction corresponding to node n to possibly repair) or it repairs a violation of

the node n before finishing the repairs on the other nodes. Since the conjunction

represented by node n may only be repaired a number of times equal to the number

of quantifier bindings for the constraint the conjunction appears in, the repair must

terminate.

6.6 Pruning the Repair Dependence Graph

Conjunction nodes, model repair nodes, data structure update nodes, or compen-

sation update nodes correspond to actions that the repair algorithm must perform.

Therefore, cycles that are reachable and contain these nodes correspond to a potential

non-terminating computation. If the repair dependence graph contains such a cycle,

the specification compiler searches for a set of conjunction nodes, update nodes, com-

pensation nodes, and consequence nodes that, if removed from the graph, remove

these cycles from the graph. Unfortunately, this search space is exponential in the

number of nodes to be searched. We have developed a set of rules to reduce this

search space. The specification compiler uses these rules to determine that a node

must remain graph, that a node must be removed from the graph, or that a node

can always safely be left in the graph. In each case, the specification compiler can

remove the given node from the set of nodes it searches. After these rules have been

136

evaluated, the specification compiler performs a search on the remaining nodes. The

specification compiler uses the following sets of rules:

Rules to determine that a node must remain in the graph:

1. The repair algorithm must have at least one repair option for each constraint.

Since conjunction nodes correspond to repair options for a constraint, a con-

junction node that represents the only way to satisfy a constraint must remain

in the graph.

2. If a conjunction node must remain in the graph, the repair algorithm has to

be able to perform all of the corresponding model repairs. To perform a model

repair, the repair algorithm must have at least one data structure update that

implements the given model repair. If a data structure update node represents

the only implementation of a model repair for a conjunction node that must

remain in the graph, then that data structure update node must remain in the

graph.

3. If the scope of a model definition rule changes, the repair algorithm can choose

to either perform a compensation update or to allow the scope change to occur.

The compensation update nodes and consequence nodes represent these two

choices. If a given scope node references only one consequence or compensation

update node, then the choice is trivial and that compensation or consequence

node must remain in the graph.

Rules to determinate that a node must be removed from the graph:

1. This rule examines a data structure update, the corresponding model repair

node, and the corresponding conjunction node (if any) in the context of the

nodes that must remain in the graph. If this set of nodes contains a cycle

through the data structure update node, then if the data structure update node

remains in the final graph it will also contain that cycle. Therefore, the data

structure update node must be removed.

137

2. This rule examines a scope node and its corresponding compensation node in

the context of the nodes that must remain in the graph. If this set of nodes

contains a cycle through the compensation node, then if the compensation up-

date node remains in the final graph it will also contain that cycle. Therefore,

the compensation update node must be removed.

3. Model repairs that modify a relation must be implemented with either a data

structure update that modifies the relation or a pair of data structure updates

in which one update removes a tuple from the relation and the other update

adds a tuple to the relation. If one data structure update in this pair is not

present, the other data structure update is not useful by itself and must be

removed from the graph.

Rule to determine that a node can safely remain in the graph

1. If a consequence node, a data structure update node, a compensation update

node, or a conjunction node in the context of all nodes that could be in the graph

has 1) no cycles through it, 2) does not result in a cycle becoming reachable

through it, and 3) the model repair and scope nodes that become reachable as

a result of the addition of this node have sufficient compensation, consequence,

and update nodes, then this node will not have any cycles through it in the com-

plete graph and has all of the necessary actions to be implemented. Therefore,

it is always safe to place this node in the graph.

138

Increase in the scope of a model definition rule that constructs the relation R1.
IF(size(V2.R2)=c′) R1 = R2

IF(size(V2.R2)<=c′) R1 = R2

IF(!size(V2.R2)=c′) R1 = R2

IF(!size(V2.R2)>=c′) R1 = R2

IF(size(V E.R2)=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(V E.R2)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(V E.R2)=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(V E.R2)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(!V3 in V2.R2) R1 = R2

IF(!V2 in V E.R2) (R1 = R2) ∨ U(V E, R1)
IF(V2.R2 comp E) (R1 = R2) ∨ U(E,R1)
IF(V E.R2 comp E) (R1 = R2) ∨ U(V E,R1) ∨ U(E,R1)
IF(R2.V2 comp E) (R1 = R2) ∨ U(E,R1)
IF(R2.V E comp E) (R1 = R2) ∨ U(V E,R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) R1 = R2

IF(size(R2.V2)<=c′) R1 = R2

IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)>=c′) R1 = R2

IF(size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)>=c′) (R1 = R2) ∨ U(V E, R1)

Decrease in the scope of a model definition rule that constructs the relation R1.
IF(size(V2.R2)=c′) R1 = R2

IF(size(V2.R2)>=c′) R1 = R2

IF(size(V E.R2)=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(V E.R2)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(V3 in V2.R2) R1 = R2

IF(V2 in V E.R2) (R1 = R2) ∨ U(V E, R1)
IF(!size(V2.R2)=c′) R1 = R2

IF(!size(V2.R2)<=c′) R1 = R2

IF(!size(V E.R2)=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(V E.R2)<=c′) (R1 = R2) ∨ U(V E, R1)
IF(V2.R2 comp E) (R1 = R2) ∨ U(E,R1)
IF(V E.R2 comp E) (R1 = R2) ∨ U(V E, R1) ∨ U(E,R1)
IF(R2.V2 comp E) (R1 = R2) ∨ U(E,R1)
IF(R2.V E comp E) (R1 = R2) ∨ U(V E, R1) ∨ U(E,R1)
IF(size(R2.V2)=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V2)>=c′) (R1 = R2) ∨ U(V E, R1)
IF(size(R2.V E)=c′) R1 = R2

IF(size(R2.V E)>=c′) R1 = R2

IF(!size(R2.V2)=c′) R1 = R2

IF(!size(R2.V2)<=c′) R1 = R2

IF(!size(R2.V E)=c′) (R1 = R2) ∨ U(V E, R1)
IF(!size(R2.V E)<=c′) (R1 = R2) ∨ U(V E, R1)

Figure 6-15: Rules for computing interference from model definition rule scope
changes

139

140

Chapter 7

Bounds on the Repair Overhead

The performance of the automatically-generated repair algorithm depends on the

specification. Specifications that contain tightly-coupled constraints, i.e. systems of

constraints in which the repair of one constraint may invalidate a second, may re-

quire more repair actions than would otherwise be expected due to possible cascading

behavior. The developer can use the repair dependence graph to reason about the

worst-case performance of the automatically generated repair algorithm.

7.1 Bound on the Number of Repair Actions

The repair dependence graph provides a means to calculate an upper bound on the

number of repair actions performed by the repair process in terms of the initial size

of the data structure. We present an algorithm that, for an acyclic repair dependence

graph, computes an upper bound on the number of repairs performed. 1 Since

the graph is acyclic, we simply analyze it in topological order. For each node, the

algorithm computes an upper bound on the number of repair actions that correspond

to the node and the number of objects (or tuples) that the action corresponding to

the node may cause to be added to a set (or relation). To calculate the number of

1The termination analysis ensures that cycles do not contain model repair nodes, data structure
update nodes, compensation update nodes, or conjunction nodes. Analyzing the remaining cycles
requires additional information about the implementation of object allocators to bound the number
of times the cycle can be performed.

141

bindings for a given node, we calculate the maximum sizes of the sets or relations

the node quantifies over (by summing the initial size of the set or relation and the

number of objects or tuples that the nodes along the incoming edges may add). We

then multiply the sizes of all the sets or relations that are quantified over to get the

total number of bindings for the node.

• Conjunction Nodes Nij: The number of times that the repair algorithm may

repair a conjunction node is bounded by one more than the sum of the repairs

of the nodes that reference this node multiplied by the number of bindings for

that conjunction node.

• Model Repair Nodes Aijkl/Ar: The number of times the repair algorithm

may perform a model repair is bounded by the sum of the number of repair

actions of the nodes that reference this node. If the model repair adds an object

or tuple to a set or relation, the number of additions to the set or relation that it

performs is equal to its number of repairs multiplied by the maximum number

of additions it may perform to satisfy a single instance of a predicate. For

example, a model repair action corresponding to the constraint size(S)=6 may

add 6 objects to the set S.

• Data Structure Update Nodes Rijklm/Rrs: The number of times the repair

algorithm may perform a data structure update is bounded by the sum of the

number of repairs of the nodes that reference this node.

• Scope Increase Nodes Sw: The number of repairs a scope increase node may

cause is bounded by the sum of the repairs of the nodes that reference this

node. The number of objects or tuples that may be added to a set or relation

by increases in the scope of the model definition rule is bounded by the sum of

the repairs of the nodes that reference this node multiplied by the number of

bindings for that model definition rule.

• Scope Decrease Nodes Fw: The number of repairs a scope decrease node

may cause is bounded by the sum of the repairs of the nodes that reference this

142

node.

• Compensation Update Nodes Rwz: The number of times the repair al-

gorithm may perform a compensation update is bounded by the number of

repairs performed by the scope increase node that references it multiplied by

the number of bindings for that scope increase node.

• Consequence Nodes CwT /CwF : The number of repair actions for a conse-

quence node is equal to the number of repair actions for the corresponding scope

increase or decrease node. The number of additions is equal to the number of

additions for the corresponding scope increase node.

This algorithm provides a method to calculate an upper bound on the number of

repairs performed by the repair algorithm. The number of times the repair algorithm

rebuilds the model is bounded by the sum of the number of conjunctions repaired, the

number of repairs of compensation nodes, the number of model repairs that modify

a relation, and the number of model repairs that remove an object or tuple from a

set or relation. The number of times the model is checked is bounded by the sum of

the conjunctions repaired.

Note that the upper bound is likely to be very conservative for most systems of

constraints. For example, typically the repair of one constraint will result in the

violation of only one binding of another constraint. The developer can adapt the

basic technique to take advantage of additional information.

7.2 Reducing the Repair Overhead

For extremely large data structures with complex specifications, the overhead of per-

forming repairs may become significant. There are two ways of reducing this overhead:

reducing the number of individual repairs that the repair algorithm performs and low-

ering the cost of each individual repair. Both of these approaches may improve the

worst-case performance of the repair algorithm.

143

7.2.1 Reducing the Number of Repairs

The number of repairs performed by the repair algorithm to satisfy a specification can

depend on the repair actions that the repair algorithm chooses to perform. In some

cases, the repair algorithm can make a trade off between the quality of the repair and

the number of repair actions.

Our current implementation uses a cost function to select conjunctions to repair.

We intended for this cost function to optimize the quality of the repairs selected. In

some cases, for performance reasons, it may be desirable to minimize the number of

additional repair actions an initial repair may trigger. The repair analysis can use the

repair dependence graph to calculate an upper bound on the number of additional

repair actions that a given repair choice may trigger. These upper bounds can be

used to select the repair actions that minimize the upper time bound of the repair

algorithm.

7.2.2 Reducing the Model Building Overhead

The current implementation completely rebuilds the model after each model repair.

If satisfying a specification involves many repair actions, this overhead can become

significant. The cost of rebuilding the model can be amortized over many repair

actions and/or only the affected portions of the model can be rebuilt.

Amortizing the Model Rebuilding Costs The current implementation rebuilds

the abstract model after each conjunction repair. The implementation could perform

many model repairs before rebuilding the model to amortize the model rebuilding

overhead. For example, for the file system example in Section 3 the model is rebuilt

every time a bit in the BlockBitmap is updated. A more efficient repair algorithm

would rebuild the model once for all of the updates to bits in the BlockBitmap.

This change would significantly reduce the time taken to perform a repair for

repairs that involve many data structure updates. However, this may not translate

into any significant real world performance gains, because we expect repairs to be

144

performed relatively infrequently for most applications.

Partial Model Rebuilding Many repairs only change a portion of the abstract

model. The repair dependence graph can be used to determine what portion of

the abstract model a given repair may invalidate. This information can be used to

partially reconstruct the abstract model between repair actions.

7.3 Reducing the Checking Overhead

For small data structures, the overhead of performing frequent consistency checks is

unlikely to be significant. However, for large data structures or systems which need

to perform very frequent consistency checking, this overhead can become significant.

We propose three methods for reducing the checking overhead.

7.3.1 Check On Failure

The system can augment the application to monitor for faults such as divide by

zero and segmentation fault violations. Because inconsistent data structures often

cause such faults, the signal handler invokes the check and repair algorithm, and then

resumes the execution at the nearest safe point.

This mechanism for triggering the repair algorithm avoids the overheads associ-

ated with performing consistency checks during the normal execution of the applica-

tion. Unfortunately, the system will fail to perform repairs if an inconsistency is not

externally detectable.

7.3.2 Partial Specification Checking

It is often the case that a method in an application is concerned with only a portion

of the objects in the application or a portion of the consistency constraints. If the

consistency constraints that involve these objects are enforced then from the method’s

view the data structure is observationally consistent.

145

The developer can use this observation to optimize checking by writing a specifica-

tion that only specifies the properties that the method relies on. While this approach

ensures that the data structure is consistent from the view of a single method, parts

of the computation which rely on the actions of multiple methods may be able to

observe inconsistencies between the actions of these methods. The developer has two

options of how to handle violations once they are detected: the repair algorithm can

repair only the portion of the complete specification that the method depends on or

the repair algorithm can repair the complete specification.

7.3.3 Incremental Checking

For data structure inconsistencies arising from software faults, the developer can

use an incremental approach to checking the consistency constraints. The repair

algorithm can use the hardware page protection mechanism to track changes to data

structures. We can use this mechanism to incrementally update the affected portions

of the model. The consistency constraints that depend on the changed portion of the

model are then re-evaluated. This incremental technique enables the repair algorithm

to check only the constraints that can be invalidated by the dynamic actions of the

application. The downside of using this technique is that the repair algorithm may

not notice inconsistencies caused by hardware failures.

A similar incremental approach can be taken with static analysis. A static anal-

ysis would analyze the software system to determine which constraints may have

been violated since the last consistency check. The specification compiler would use

the results of the static analysis to generate repair algorithms that only check the

constraints that may have been violated since the last consistency check.

146

Chapter 8

Developer Control of Repairs

The repair tool contains features designed to provide the developer insight into and

control over the repair process. We have included features that provide the devel-

oper with the ability to specify preferences for repair actions and even to eliminate

undesirable repair actions. The developer can also use the repair dependence graph

to gain insight into the potential behaviors of the generated repair algorithms.

8.1 Developer Control

The repair algorithm often has multiple repair options that can be used to satisfy a

given constraint; these options may translate into different repaired data structures.

Some repair actions may produce more desirable data structures than other repair

actions. In particular, some repair actions may produce data structures that lead

to acceptable executions while other repair actions may produce data structures that

cause the application to perform unacceptably. For example, consider a data structure

that consists partially of memory mapped sensor data. Repairs that modify the sensor

data would likely be unacceptable, while repairs that adjust the other state to be

consistent with the sensor data would likely be acceptable. The developer may be

able to provide guidance as to which repair actions are acceptable. We have therefore

provided the developer with several mechanisms that he or she can use to control how

the repair algorithm chooses to repair an inconsistent data structure.

147

The repair algorithm uses a cost function to decide at runtime how to repair a

given constraint. The cost function assigns a cost to satisfying each basic proposition.

The repair algorithm uses this cost function to assign costs to each repair option, and

then chooses the repair option with the lowest cost. The cost function is implemented

as a method that takes a basic proposition or negated basic proposition and returns

an integer cost for making that proposition true. The developer may provide an

alternate method for computing costs. Suppose that the developer wished to bias the

repair algorithm against repairs that falsify inclusion constraints. He or she might

write a cost function that assigns a cost of 10 to negated inclusion constraints and a

cost of 1 to all other basic propositions. In general, the cost function can be used to

bias the repair algorithm towards (or away from) different types of repairs.

In some cases, a given repair action or even set of repair actions should never

be performed. For example, suppose the specification compiler generated a repair

action that repairs a linked list by deleting it. Our system contains a command line

option to exclude satisfying a specific conjunction, and therefore performing any of

its model repairs. The mechanism functions by removing these conjunctions from the

repair dependence graph. One might also want to exclude data structure updates or

compensation updates that are less desirable than other updates. It is straightforward

to extend the same mechanism to allow the developer to specify data structure or

compensation updates that should not be performed. The specification compiler

would then attempt to generate repair algorithms that function without performing

these updates or model repairs.

The developer may also wish to eliminate data structure updates, compensation

updates, or model repairs that modify certain fields, array elements, sets, or relations.

For example, consider an application that reads from a memory-mapped sensor. The

repair algorithm should function to make the application’s state consistent with the

sensor readings and not to make the sensor readings consistent with the application’s

state. We could easily extend the specification compiler to allow the developer to

specify a set of fields, sets, and relations that should not be modified. The specification

compiler would eliminate all data structure updates, compensation updates, or model

148

repairs that may modify these elements.

In some cases, it may be desirable to have complete control over specific repairs.

For example, the developer may wish to use domain-specific knowledge to improve the

performance of a given class of repairs. While our system does not currently support

this, it can easily be extended to support developer provided repair routines. Upon

discovering an inconsistency, the repair algorithm would initially call the developer

provided repair routine. If the developer provided routine failed, the system could

fall back on the automatically-generated code.

In some cases, the repair of certain constraints may not be desirable. Our system

can simply detect violations of a given constraint, report the violation, and then stop

the execution of the application. The choice of whether to repair or stop when a

constraint is violated can be made on a constraint by constraint basis.

Finally, when a model repair requires a new object there are often multiple po-

tential sources for such an object. The repair algorithm can acquire the new object

either from a different set or by calling an allocator, and the developer can specify the

set or the allocator method. We similarly allow the developer to control the source

of objects used to compose tuples in relations.

8.2 Communication with the Developer

In many cases, the developer will treat our specification compiler as a black box

that takes in a consistency specification and generates a repair algorithm. However,

in some cases the developer may wish to know more about the repair algorithm

compilation process. For example, in some cases our specification compiler can fail

to generate a repair algorithm for a specification. This can happen for three different

reasons:

• In some cases, the specification compiler cannot verify that a repair algorithm

terminates. This can occur because either the specification is not satisfiable,

the specification compiler is not able to generate a terminating repair algorithm,

or in the case of repair algorithms that actually terminate, imprecision in the

149

termination analysis may prevent the specification compiler from verify that the

algorithm terminates.

• The specification compiler can fail to generate a repair algorithm because the

specification compiler is unable to generate model repairs for a given basic

proposition. For example, the specification compiler does not generate model

repairs for the consistency constraint for s in Set, s.R=s.R*s.R-2 because

repairs to the relation R change the value of the right hand side of the equality.

• Finally, the specification compiler may be unable to generate data structure

updates that implement the model repair.

The developer would like to understand why the specification compiler failed to

generate a repair algorithm so that he or she can modify the specification in order

to be able to successfully generate a repair algorithm. Even when a repair algo-

rithm is successfully generated, some developers may wish to understand the possible

behaviors of the generated repair algorithm.

Our specification compiler generates repair dependence graphs during the com-

pilation process. The developer can examine these graphs to determine what model

repairs and updates may be performed by the repair algorithm; which conjunctions

will be used to satisfy a constraint; and the dependences between repair actions, the

abstract model, and consistency constraints.

The developer can use the repair dependence graph to understand why the spec-

ification compiler failed to generate a repair algorithm. The developer can examine

the repair dependence graph to determine whether the necessary repair actions were

generated for each constraint and examine any cycles in the repair dependence graph

to determine why the compiler is unable to generate a terminating repair algorithm

from the specification.

Furthermore, since the repair dependence graph enumerates all possible repair

actions, the developer can use the repair dependence graph to determine whether the

possible behaviors of a generated repair algorithm are acceptable. The developer can

use the repair dependence graph to reason about the possible effects of repairs, what

150

repair actions may be performed as a result of these effects, and how this may affect

the data structures. For example, the developer can use the repair dependence graph

to determine whether objects may be deleted and which fields may be modified in

response to a data structure inconsistency.

151

152

Chapter 9

Experience

We next discuss our experience using our repair tool to detect and repair inconsisten-

cies in data structures from five different applications: a word processor, a parallel

x86 emulator, an air-traffic control system, a Linux file system, and an interactive

game.

9.1 Methodology

We implemented our specification compiler to evaluate our repair algorithm. This

implementation consists of approximately 20,800 lines of Java and C code. The

implementation compiles specifications into C code that performs the consistency

checks and (if necessary) repairs the data structures. Our current implementation

is limited in that it does not implement the operations on recursive data structures

described in Section 5.5.4 nor does it automatically calculate complexity bounds as

described in Chapter 7. The source code for the tool and sample specifications are

available at http://www.cag.lcs.mit.edu/∼bdemsky/repair. We ran the applications

(with the exception of the parallel x86 emulator) on an IBM ThinkPad X23 with an

866 Mhz Pentium III processor, 384 MB of RAM, and RedHat Linux 8.0.

For each application, we identified important consistency constraints and devel-

oped a specification that captured these constraints. To reduce specification overhead,

we developed a structure definition extraction tool that uses debugging information in

153

the executable to automatically generate the structure definitions. This tool works for

any application that can be compiled with Dwarf-2 debugging information. We used

this tool to automatically generate structure definitions for AbiWord, the parallel x86

emulator, CTAS, and Freeciv. We also obtained a workload that caused the appli-

cation to generate corrupt data structures. When possible, the workload triggered

a known programming error. In other cases, we used fault insertion to mimic either

the effect of a previously corrected programming error or a common data structure

inconsistency source. We then compared the results of running a chosen workload

with and without inconsistency detection and repair.

Limitations of the Study We designed this study to test if data structure repair,

when given a specification that detects an inconsistency, effectively enables applica-

tions to recover from that inconsistency. We verified that a selected software error

(or fault injection) caused the application to fail, and then wrote the relevant consis-

tency specifications for the effected data structure. The study was not designed to

evaluate how difficult it is to write complete data structure consistency specifications

for an application, or to evaluate how likely specifications written by developers are

to discover inconsistencies caused by real world errors.

9.2 AbiWord

AbiWord is a full-featured, open source word processing application available at

www.abisource.com. It consists of over 360,000 lines of C++ code. It can import and

export many file formats including Microsoft Word documents.

AbiWord uses a piece table data structure to internally represent documents.

Figure 9-1 shows a piece table data structure. The piece table contains a doubly-linked

list of document fragments. A consistent piece table contains a reference to both the

head and the tail of the doubly linked list of document fragments. A consistent

fragment contains a reference to the next fragment in the list and a reference to the

previous fragment in the list. Furthermore, a consistent list of fragments contains

154

Figure 9-1: Piece Table Data Structure

both a section fragment and a paragraph fragment.

9.2.1 Specification

We developed a specification for the piece table data structure. Our specification

consists of 94 lines, of which 70 contain automatically-generated structure definitions.

Figure 9-2 gives the structure definitions for the data structures that make up the piece

table. The pf Fragments data structure maintains pointers to the beginning and end

of the linked list of document fragments. The pf Frag structure definition gives the

generic layout of document fragments, the pf Frag Strux structure definition gives

the layout of structural document fragments, the pf Frag Strux Block structure

definition gives the layout of the block fragment, and the pf Frag Strux Section

structure definition gives the layout of the section fragment. Figure 9-3 gives the set

and relation declarations for the abstract model of the piece table data structure.

155

Figure 9-4 gives the model definition rules that define this abstract model in terms

of the concrete data structures. The first rule adds the pf Fragments object to

the Fragments set. The next two rules add the section and block fragments to

the firstblock and secondblock sets, respectively. The fourth, fifth, and sixth

rules create the set of fragments and the Next and Prev relations that link these

fragments. The remaining rules abstract the length field and the last fragment in the

list. Figure 9-5 gives the model constraints for the piece table. 1 These constraints

ensure that the piece table exists, that it contains a section fragment, that it contains a

paragraph fragment, that the m prev pointers are consistent with the m next pointers,

that the m pLast pointer points to the end of the fragment list, and that each fragment

has a valid m length field.

9.2.2 Error

An error in version 0.9.5 (and previous versions) of AbiWord causes AbiWord to

attempt to append text to a piece table which lacks a section fragment or a paragraph

fragment. Importing certain valid Microsoft Word documents triggers this error,

causing AbiWord to fail with a segmentation violation when the user attempts to load

the document. This error was fixed in subsequent versions of AbiWord by placing

explicit checks for the section and paragraph fragments in the code that appends

text to the piece table. If these checks indicate that a fragment is missing, the patch

creates the appropriate section and adds it to the piece table.

We obtained a Microsoft Word document that triggered this error and used our

system to enhance AbiWord with data structure repair as described in this disserta-

tion. It is important to note that this document is a valid Microsoft Word document,

and that Microsoft Word has no problem loading the document.

1Our implementation supports using ∼R to indicate the inverse of the relation R. Therefore, the
expression f.∼Next denotes the image of f under the inverse of the Next relation.

156

structure UT_Vector {
void * m_pEntries;
int m_iCount;
int m_iSpace;
int m_iCutoffDouble;
int m_iPostCutoffIncrement;

}

structure pf_Fragments {
pf_Frag * m_pFirst;
pf_Frag * m_pLast;
UT_Vector m_vecFrags;
byte m_bAreFragsClean;
reserved byte[3];
pf_Frag * m_pCache;

}

structure pf_Frag {
void * _vptr_pf_Frag;
int m_type;
int m_length;
pf_Frag * m_next;
pf_Frag * m_prev;
fd_Field * m_pField;
pt_PieceTable * m_pPieceTable;
int m_docPos;

}

structure pf_Frag_Strux
subclass of pf_Frag {
void * _vptr_pf_Frag;
int m_type;
int m_length;
pf_Frag * m_next;
pf_Frag * m_prev;
fd_Field * m_pField;
pt_PieceTable * m_pPieceTable;
int m_docPos;
int m_struxType;
int m_indexAP;
UT_Vector m_vecFmtHandle;

}

structure pf_Frag_Strux_Block
subclass of pf_Frag_Strux {
void * _vptr_pf_Frag;
int m_type;
int m_length;
pf_Frag * m_next;
pf_Frag * m_prev;
fd_Field * m_pField;
pt_PieceTable * m_pPieceTable;
int m_docPos;
int m_struxType;
int m_indexAP;
UT_Vector m_vecFmtHandle;

}

structure pf_Frag_Strux_Section
subclass of pf_Frag_Strux {
void * _vptr_pf_Frag;
int m_type;
int m_length;
pf_Frag * m_next;
pf_Frag * m_prev;
fd_Field * m_pField;
pt_PieceTable * m_pPieceTable;
int m_docPos;
int m_struxType;
int m_indexAP;
UT_Vector m_vecFmtHandle;

}

pf_Fragments * fragments;

Figure 9-2: Structure Definitions for AbiWord (extracted)

157

set Fragments(pf_Fragments);
set Frags(pf_Frag): firstblock | secondblock | Last;
set Last(pf_Frag);
set firstblock(pf_Frag_Strux_Section);
set secondblock(pf_Frag_Strux_Block);
Next: Frags -> Frags;
Prev: Frags -> Frags;
set LFrag(pf_Frag);
PLast: Fragments -> LFrag;
Length: Frags -> int;

Figure 9-3: Model Declarations for AbiWord

!(fragments=null) => fragments in Fragments;
for f in Fragments, ((!(f.m_pFirst=null)) and (f.m_pFirst.m_type=2))
and cast(pf_Frag_Strux,f.m_pFirst).m_struxType=0 =>
cast(pf_Frag_Strux_Section,f.m_pFirst) in firstblock;

for f in firstblock, ((!(f.m_next=null)) and (f.m_next.m_type=2))
and cast(pf_Frag_Strux,f.m_next).m_struxType=1 =>
cast(pf_Frag_Strux_Block,f.m_next) in secondblock;

for f in Frags, !(f.m_next=null) => f.m_next in Frags;
for f in Frags, !(f.m_next=null) => <f,f.m_next> in Next;
for f in Frags, !(f.m_prev=null) => <f,f.m_prev> in Prev;
for f in Frags, (f.m_next=null) => f in Last;
for f in Frags, true => <f,f.m_length> in Length;
for f in Fragments, !(f.m_pLast=null) => <f,f.m_pLast> in PLast;
for f in Fragments, !(f.m_pLast=null) => f.m_pLast in LFrag;

Figure 9-4: Model Definition Rules for AbiWord

size(firstblock)=1;
size(Fragments)=1;
size(secondblock)=1;
for f in Frags, (!(size(f.Next)=1)) or ((f.Next.Prev=f) and
size(f.Next.Prev)=1);

for f in Frags, (size(f.~Next)<=1);
for f in firstblock, size(f.~Next)=0;
for l in Last, for f in Fragments], f.PLast=l and size(f.PLast)=1;
for f in Frags, f.Length>=1;

Figure 9-5: Consistency Constraints for AbiWord

158

9.2.3 Results

We began by running a version of AbiWord without repair. We imported a Microsoft

Word document that was known to crash AbiWord. This document caused AbiWord

to append text to an (inconsistent) empty fragment list. Later when Abiword at-

tempts to process this internal representation of the document, it crashes due to this

inconsistency. We repeated the experiment with a version of AbiWord that incor-

porates a repair algorithm generated with our specification compiler. We imported

a Microsoft Word document that was known to crash AbiWord. When AbiWord

executes the text flush method to append a text fragment, the application invokes

the generated repair algorithm, then the generated repair algorithm detects that the

piece table is missing a section and paragraph fragment and repairs the inconsistency

by adding a section fragment and a paragraph fragment. To perform this repair,

the generated repair algorithm first allocates the section fragment. It then redirects

the m pFirst pointer to the newly allocated section fragment. It then allocates a

paragraph fragment, and redirects the m next pointer of the section fragment to the

newly allocated paragraph fragment. Finally, it points the m prev field of each frag-

ment to the previous fragment, and redirects the m pLast pointer to the end of the

fragment list. The result of this repair is that AbiWord is able to successfully append

the text to the list. The effect of this repair on the end user is that he or she is able

to successfully load and edit Word documents. This particular combination of error

and repair strategy does not result in the loss of any information in the document.

However, it is possible that other errors could result in repairs that lose information.

For our benchmark file, a consistency check for AbiWord took 0.06 milliseconds;

performing a check and repair took 0.55 milliseconds. As the check is only performed

when text is flushed to the piece table (a handful of times), the checking overhead

is not significant. For our test document, the repair algorithm performed 7 data

structure updates and rebuilt the abstract model 10 times.

159

Figure 9-6: Cache Data Structure

9.3 Parallel x86 emulator

The MIT RAW [35] architecture consists of a grid of interconnected computational

tiles. Each of these tiles is a MIPS-style processor. The MIT RAW group developed

a software-based parallel x86 emulator to explore running x86 binaries on this ar-

chitecture. The x86 emulator uses a tree data structure to cache translations of the

x86 code. Figure 9-6 shows an example of the tree data structure used for caching

translations. To efficiently manage the size of the cache, the emulator maintains a

variable that stores the current size of the cache.

160

9.3.1 Specification

We developed a specification that ensures that the computed size of the cache is cor-

rect. Our specification consists of 110 lines, of which 90 contain structure definitions

that were automatically extracted. Figures 9-7, 9-8, 9-9, and 9-10 give the structure

definitions, model declarations, model definition rules, and model constraints, respec-

tively. The specification ensures that the computed size of the cache is consistent

with the actual size of the cache.

9.3.2 Error

The x86 emulator uses a tree to cache translated x86 instructions. A pre-existing error

in the tree insertion method causes (under some conditions) the cache management

code to add the size of the inserted cache item to this variable twice. When this

item is removed, the code subtracts the size of the item only once. The net result of

inserting and removing such an item is that the computed size of the cache becomes

increasingly larger than the actual size of the cache. The end result is that the

emulator eventually crashes when it attempts to remove items from an empty cache.

9.3.3 Results

Our test workload ran gzip on the x86 emulator. We instrumented the x86 emulator

to call the generated repair code prior to any cache eviction. The generated repair

algorithm computes the size of cache data structure and detects an inconsistency

between the size it computes and the stored value. To repair this inconsistency, the

repair algorithm updates the stored size of the cache to be equal to the actual size of

the cache. The result of this repair is that the x86 emulator no longer attempts to

evict cache items from an empty cache. The effect of this repair on the end user is that

the x86 emulator is able to successfully execute gzip. Without repair, the emulator

stops with a failed assertion. With repair, the emulator successfully executes gzip.

In general, the repair algorithm repairs data structures by assigning fields to new

values that make the data structure consistent, but it may not generate the same

161

structure TYPE2 {
byte opcode;
byte special;
byte common;
byte regImm;
byte resultRegister;
byte inputARegister;
byte inputBRegister;
byte pad0;
int immediate;
int shiftAmount;
int binaryRepresentation;
byte hasSpecial;
byte hasCommon;
byte hasRegImm;
byte writesResultRegister;
byte readsResultRegister;
byte readsInputARegister;
byte readsInputBRegister;
byte readsSPRs;
byte writesSPRs;
byte readsMemory;
byte writesMemory;
byte hasImmediate;
byte hasShiftAmount;
byte changesControlFlow;
byte writesHILO;
byte readsHILO;

}

structure code_holder {
int addressOfCode;
_UCodeBlock * theUCodeBlock;
int ucodeLevel;
TYPE0 * theRawInstructionBlockDense;
int rawCodeLevel;
int lockMutex;

}

structure code_tree {
code_tree * left;
code_tree * right;
code_holder * theCodeHolder;
int theAddress;
int depth;

}

structure TYPE0 {
int * translatedCode;
TYPE2 * instructions;
int numberOfRawInstructions;

}

structure TYPE1 {
int lit32;
short val1;
short val2;
short val3;
byte opcode;
byte size;
byte flags_r;
byte flags_w;
byte tag1;
byte tag2;
byte tag3;
byte extra4b;
byte cond;
byte signed_widen;
int jmpkind;
byte argc;
byte regparms_n;
byte has_ret_val;
int regs_live_after;

}

structure _UCodeBlock {
int orig_eip;
int used;
int size;
int numberOfNextIPs;
int nextIP[3];
int nextIPType[3];
byte deadFlagsOut;
byte deadFlagsIn;
reserved byte[2];
TYPE1 * instrs;
int nextTemp;

}

code_tree * root;
int cacheSize;

Figure 9-7: Structure Definitions for x86 Emulator (extracted)

162

set TreeNodes(code_tree);
set CodeHolders(code_holder);
set UCodeBlocks(_UCodeBlock);
set InstructionBlocks(TYPE0);
NumRawInstructions:InstructionBlocks->int;
NumTranslatedInstructions:InstructionBlocks->int;
Size:UCodeBlocks->int;
set Global(int);
CacheSize:Global->int;

Figure 9-8: Model Declarations for x86 Emulator

root!=null => root in TreeNodes;
for n in TreeNodes, n.left!=null => n.left in TreeNodes;
for n in TreeNodes, n.right!=null => n.right in TreeNodes;
for n in TreeNodes, n.theCodeHolder!=null => n.theCodeHolder in CodeHolders;
for n in CodeHolders, n.theUCodeBlock!=null => n.theUCodeBlock in UCodeBlocks;
for n in UCodeBlocks, true => <n,n.size> in Size;
for n in CodeHolders, n.theRawInstructionBlockDense!=null =>
n.theRawInstructionBlockDense in InstructionBlocks;

for n in InstructionBlocks, true =>
<n,n.numberOfRawInstructions> in NumRawInstructions;

for n in InstructionBlocks, n.translatedCode!=null =>
<n,n.numberOfRawInstructions> in NumTranslatedInstructions;

true => 0 in Global;
for n in Global, true => <n, cacheSize> in CacheSize;

Figure 9-9: Model Definition Rules for x86 Emulator

for n in Global, n.CacheSize=size(TreeNodes)*20+size(CodeHolders)*24+
size(UCodeBlocks)*52+sum(UCodeBlocks.Size)*20+size(InstructionBlocks)*12+
sum(InstructionBlocks.NumRawInstructions)*24+
sum(InstructionBlocks.NumTranslatedInstructions)*4;

Figure 9-10: Consistency Constraints for x86 Emulator

163

data structure that a correct execution would have. However, in some cases appli-

cations maintain redundant information in data structures. Developers typically use

redundant information for efficiency reasons. This enables the application to avoid

recomputing some expression. In this case of the x86 emulator, the repair algorithm

is able to use redundant information to recompute the size of the cache, and then to

replace the incorrect value with the correct value.

9.4 CTAS

The Center-TRACON Automation System (CTAS) is a set of air-traffic control tools

developed at the NASA Ames research center [1, 34]. The system is designed to help

air traffic controllers visualize and manage the complex air traffic flows at centers

surrounding large metropolitan airports. 2 In addition to graphically displaying the

location of the aircraft within the center, CTAS also uses sophisticated algorithms

to predict aircraft trajectories and schedule aircraft landings. The goal is to auto-

mate much of the aircraft traffic management, reducing traffic delays and increasing

safety. The current source code consists of over 1 million lines of C and C++ code.

Versions of this source code are deployed at seven of the 21 centers in the continen-

tal United States (Dallas/Ft. Worth, Los Angeles, Denver, Miami, Minneapolis/St.

Paul, Atlanta, and Oakland) and are in daily use at these centers.

Strictly speaking, CTAS is an advisory system in that the air-traffic controllers are

expected to be able to bring aircraft down safely even if the system fails. Nevertheless,

CTAS has several properties that are characteristic of our set of target applications.

Specifically, it is a central part of a broader system that manages and controls safety-

critical real-world phenomena and, as is typical of these kinds of systems, it deals

with a bounded window of time surrounding the current time.

The CTAS software maintains data structures that store aircraft data. Our ex-

2A center is a geographical region surrounding the major airport. In addition to the major
airport, each center typically contains several smaller regional airports. Because these airports share
overlapping airspaces, the air traffic flows must be coordinated for all of the aircraft within the
center, regardless of their origin or destination.

164

Figure 9-11: CTAS Data Structure

periments focus on the flight plan objects, which store the flight plans for the aircraft

currently within the center. Figure 9-11 shows a sample CTAS flight plan data struc-

ture. These flight plan data structures contain both an origin and destination airport

identifier. The software uses these identifiers as indices into an array of airport data

structures. Flight plans are transmitted to CTAS as a long character string. The

structure of this string is somewhat complicated, and parsing the flight plan string is

a challenging activity.

9.4.1 Specification

Our specification captures the constraint that the flight plan indices must be within

the bounds of the airport data array. The specification itself consists of 101 lines, of

which 84 lines contain structure definitions. The primary challenge in developing this

specification was reverse engineering the source to develop an understanding of the

data structures. Once we understood the data structures, developing the specification

was straightforward.

The specification ensures that aircraft are assigned to a valid category, that depart-

ing aircraft are assigned to a valid origin airport, that arriving aircraft are assigned to

165

a valid destination airport, and that if an origin or a destination airport is unassigned

that the corresponding field is set to the special “not set” value.

9.4.2 Fault Injection

Flight plan parsing is surprisingly difficult. Part of the reason for this is that the

format of the flight plan strings was originally developed for human flight controllers

to use. Earlier versions of CTAS contained a buffer overrun error in the flight plan

parsing code that could result in corrupted flight plans. The source of this error is that

flight plan strings could be longer than what the CTAS designers had thought, and as

a result CTAS could overwrite other fields in the flight plan data structure. Our fault

insertion methodology attempts to mimic errors in the flight plan processing that

produce illegal values in the flight plan data structures. Our fault injector corrupts

the destination field of the flight plan. When the application uses these corrupted

values to access the array of airport data, the array access is out of bounds, which

typically leads to the application failing because of an addressing error.

9.4.3 Results

We used a recorded midday radar feed from the Dallas-Ft. Worth center as a work-

load. The generated repair algorithm is invoked whenever a new flight plan enters

the system or an old flight is amended. Without repair, CTAS fails because of an ad-

dressing exception. With repair, it continues to execute in a largely acceptable state.

Specifically, the effect of the repair is to potentially change the origin or destination

airport of the aircraft with the faulty flight plan. Even with this change, continued

operation is clearly a better alternative than failing. First, one of the primary pur-

poses of the system, visualizing aircraft flow, is unaffected by the repair. Second, only

the origin or destination airport of the plane whose flight plan triggered the error is

affected. All other aircraft are processed with no errors at all.

Rebooting CTAS after a crash is an inadequate solution. After a reboot, CTAS

takes several minutes to reacquire flight plans and radar data. Furthermore, as long

166

as the problematic flight plan remains in the system, rebooting the system will be

ineffective: the system will reacquire the same problematic flight plan, reprocess it,

and fail again for the same reason.

On our benchmark system, an average consistency check for CTAS took 0.07

milliseconds and performing a check and repair took 0.15 milliseconds. As the check is

only performed when a flight plan is changed, the checking overhead is not significant.

For our test run, the repair algorithm performed 1 data structure update and rebuilt

the abstract model 3 times.

9.5 Freeciv

Freeciv is an interactive, multi-player game available at www.freeciv.org. The Freeciv

server maintains a map of the game world. Figure 9-12 show a sample map data

structure. This map references an array of tiles. Each tile in this array has a terrain

value chosen from a set of legal terrain values. Additionally, cities may be placed on

the tiles (indicated by a reference from the tile to a city object).

9.5.1 Specification

The specification consists of 191 lines, of which 173 lines contain structure definitions

that were automatically extracted. The principal challenge in developing this specifi-

cation was reverse engineering the Freeciv source (which consists of 73,000 lines of C

code) to develop an understanding of the data structures. Once we understood the

data structures, developing the specification was straightforward.

Figures 9-13, 9-14, 9-15, 9-16, and 9-17 give part one of the structure definitions,

part two of the structure definitions, the model declarations, the model definition

rules, and the consistency constraints, respectively. The specification ensures that

the game map exists, that the grid of tiles exists, that each tile has a legal terrain

value, and that cities are not placed in the ocean.

167

Figure 9-12: Freeciv Data Structure

9.5.2 Fault Injection

Our fault injection strategy changes the terrain values in pseudo-randomly selected

tiles 35 times during the execution of the application. There are two possible errors:

illegal terrain values or cities located on an ocean tile instead of a land tile. Our

repair algorithm repairs these kinds of errors by assigning a legal terrain value to any

tile with an illegal value and by assigning a land terrain value to any ocean tiles that

contain a city.

168

structure civ_map {
int xsize;
int ysize;
int seed;
int riches;
int is_earth;
int huts;
int landpercent;
int grasssize;
int swampsize;
int deserts;
int mountains;
int riverlength;
int forestsize;
int generator;
int tinyisles;
int separatepoles;
int num_start_positions;
int fixed_start_positions;
int have_specials;
int have_huts;
int have_rivers_overlay;
int num_continents;
tile_array * tiles;
map_position start_positions[63];

}

structure tile_array {
tile elem[m.xsize*m.ysize];

}

structure tile {
int terrain;
int special;
city * city;
unit_list units;
int known;
int sent;
int assigned;
city * worked;
short continent;
byte move_cost[8];
reserved byte[2];

}

structure unit_list {
genlist list;

}

structure genlist {
int nelements;
genlist_link null_link;
genlist_link * head_link;
genlist_link * tail_link;

}

structure genlist_link {
genlist_link * next;
genlist_link * prev;
void * dataptr;

}

structure map_position {
int x;
int y;

}

structure athing {
void * ptr;
int size;
int n;
int n_alloc;

}

structure ceff_vector {
athing vector;

}

structure worklist {
int is_valid;
byte name[32];
int wlefs[16];
int wlids[16];

}

structure ai_choice {
int choice;
int want;
int type;

}

Figure 9-13: Part 1 of the Structure Definitions for Freeciv (extracted)

169

structure city {
int id;
int owner;
int x;
int y;
byte name[32];
int size;
int ppl_happy[5];
int ppl_content[5];
int ppl_unhappy[5];
int ppl_angry[5];
int ppl_elvis;
int ppl_scientist;
int ppl_taxman;
int trade[4];
int trade_value[4];
int food_prod;
int food_surplus;
int shield_prod;
int shield_surplus;
int trade_prod;
int corruption;
int tile_trade;
int shield_bonus;
int tax_bonus;
int science_bonus;
int luxury_total;
int tax_total;
int science_total;
int food_stock;
int shield_stock;
int pollution;
int incite_revolt_cost;
int is_building_unit;
int currently_building;
byte improvements[200];
ceff_vector effects;
worklist worklist;
int city_map[25];
unit_list units_supported;
int steal;
int did_buy;
int did_sell;
int is_updated;
int turn_last_built;
int turn_changed_target;
int changed_from_id;

int changed_from_is_unit;
int disbanded_shields;
int caravan_shields;
int before_change_shields;
int anarchy;
int rapture;
int was_happy;
int airlift;
int original;
int city_options;
int synced;
unit_list info_units_supported;
unit_list info_units_present;
ai_city ai;

}

structure ai_city {
int workremain;
int ai_role;
int building_want[200];
int danger;
int diplomat_threat;
int urgency;
int grave_danger;
int wallvalue;
int trade_want;
ai_choice choice;
int downtown;
int distance_to_wonder_city;
short detox[25];
short derad[25];
short mine[25];
short irrigate[25];
short road[25];
short railroad[25];
short transform[25];
short tile_value[25];
int settler_want;
int founder_want;
int a;
int f;
int invasion;

}

civ_map *map;

Figure 9-14: Part 2 of the Structure Definitions for Freeciv (extracted)

170

set MAP(civ_map);
set GRID(tilegrid);
set TILE(tile);
set TERRAINTYPES(int);
set CITY(city);
CITYMAP: TILE -> CITY;
TERRAIN: TILE -> int;

Figure 9-15: Model Declarations for Freeciv

true => map in MAP;
for m in MAP, true => m.tiles in GRID;
for t in GRID, for x=0 to map.xsize-1, for y=0 to map.ysize-1], true =>
t.elem[x+(y*map.xsize)] in TILE;

for t in TILE, true => <t,t.terrain> in TERRAIN;
for t in TILE, !(t.city = NULL) => <t,t.city> in CITYMAP;
for t in TILE, !(t.city = NULL) => t.city in CITY;

Figure 9-16: Model Definition Rules for Freeciv

size(MAP)=1;
size(GRID)=1;
for t in TILE, t.TERRAIN>=0 and t.TERRAIN<=11;
for c in CITY, size(c.~CITYMAP)=1;
for c in CITY, !c.~CITYMAP.TERRAIN=7;

Figure 9-17: Consistency Constraints for Freeciv

171

9.5.3 Results

Freeciv comes with a built-in test mode in which several automated players play

against each other. Our workload simply runs the application in this built-in test

mode. We configured the map to contain 4,000 tiles. With repair, the game was able

to execute without failing on our test run (although the game played out differently

because of changed terrain values). Freeciv is played in rounds. The generated repair

algorithm was invoked at the beginning of each round of the game. The generated

repair algorithm detected inconsistent terrain values and cities placed on ocean tiles,

then reset the inconsistent terrain fields to legal terrain values. Without repair, the

game crashed with a segmentation fault caused by indexing an array with an illegal

terrain value.

On our benchmark system, an average consistency check for Freeciv took 3.62

milliseconds and performing a check and repair took 15.66 milliseconds. As the check

is only performed once per a game round, the checking overhead is not significant.

For our test run, repair algorithm performed 1.8 data structure updates and rebuilt

the abstract model 4.6 times on average.

9.6 A Linux File System

Our Linux file system application implements a simplified version of the Linux ext2 file

system. The file system, like other Unix file systems, contains bitmaps that identify

free and used disk blocks. The file system uses these disk blocks to support fast disk

block and inode allocation operations. For our experiments, we used a file system

with 1024 disk blocks.

9.6.1 Specifications

Our consistency specification contains 108 lines, of which 55 lines contain structure

definitions. Because the structure of such file systems is widely documented in the

literature, it was relatively easy for us to develop the specification.

172

structure Block {
reserved byte[d.s.blocksize];

}

structure Disk {
Block b[d.s.NumberofBlocks];
label b[0]: Superblock s;
label b[1]: Groupblock g;

}

structure Superblock subtype of Block {
int FreeBlockCount;
int FreeInodeCount;
int NumberofBlocks;
int NumberofInodes;
int RootDirectoryInode;
int blocksize;

}

structure Groupblock subtype of Block {
int BlockBitmapBlock;
int InodeBitmapBlock;
int InodeTableBlock;
int GroupFreeBlockCount;
int GroupFreeInodeCount;

}

structure InodeTable subtype of Block {
Inode itable[d.s.NumberofInodes];

}

structure InodeBitmap subtype of Block {
bit inodebitmap[d.s.NumberofInodes];

}

structure BlockBitmap subtype of Block {
bit blockbitmap[d.s.NumberofBlocks];

}

structure Inode {
int filesize;
int Blockptr[12];
int referencecount;

}

structure DirectoryBlock subtype of Block {
DirectoryEntry de[d.s.blocksize/128];

}

structure DirectoryEntry {
byte name[124];
int inodenumber;

}

Disk *d;

Figure 9-18: Structure Definitions for File System

Figures 9-18, 9-19, 9-20, and 9-21 give the structure definitions, the model dec-

larations, the model definition rules, and the consistency constraints, respectively.

The specification ensures that the inode table, inode bitmap, block bitmap, and root

directory inode all exist; that the inode bitmap correctly indicates whether an inode

is used; that the block bitmap correctly indicates whether a block is used; that the

inode reference count is correct; that a file’s size is consistent with the number of

blocks it has; and that a block is only in at most one file or directory.

9.6.2 Fault Injection

Our fault insertion mechanism for this application simulates the effect of a system

crash or power failure: it shuts down the file system (potentially in the middle of

an operation that requires several disk writes), then discards the cached state. Our

173

set Block(Block): UsedBlock | FreeBlock;
set FreeBlock(Block);
set Inode(Inode): UsedInode | FreeInode;
set FreeInode(Inode);
set UsedInode(Inode): FileInode | DirectoryInode;
set FileInode(Inode);
set DirectoryInode(Inode): RootDirectoryInode;
set RootDirectoryInode(Inode);
set UsedBlock(Block): SuperBlock | GroupBlock | FileDirectoryBlock |
InodeTableBlock | InodeBitmapBlock | BlockBitmapBlock;

set FileDirectoryBlock(Block): DirectoryBlock | FileBlock;
set SuperBlock(Superblock);
set GroupBlock(Groupblock);
set FileBlock(Block);
set DirectoryBlock(Block);
set InodeTableBlock(InodeTable);
set InodeBitmapBlock(InodeBitmap);
set BlockBitmapBlock(BlockBitmap);
set DirectoryEntry(DirectoryEntry);
inodeof: DirectoryEntry -> UsedInode;
contents: UsedInode -> FileDirectoryBlock;
inodestatus: Inode -> int;
blockstatus: Block -> int;
referencecount: Inode -> int;
filesize: Inode -> int;

Figure 9-19: Model Declarations for File System

174

true => d.s in SuperBlock;
true => d.g in GroupBlock;
true => cast(InodeTable,d.b[d.g.InodeTableBlock]) in InodeTableBlock;
true => cast(InodeBitmap,d.b[d.g.InodeBitmapBlock]) in InodeBitmapBlock;
true => cast(BlockBitmap,d.b[d.g.BlockBitmapBlock]) in BlockBitmapBlock;
for itb in InodeTableBlock, true =>
itb.itable[d.s.RootDirectoryInode in RootDirectoryInode;

for itb in InodeTableBlock, for j=0 to d.s.NumberofInodes-1],
!(itb.itable[j] in? UsedInode) => itb.itable[j] in FreeInode;

for j=0 to d.s.NumberofBlocks-1, !(d.b[j] in? UsedBlock) => d.b[j] in FreeBlock;
for di in DirectoryInode, for j=0 to ((d.s.blocksize/128)-1), for k=0 to 11,
true => cast(DirectoryBlock,d.b[di.Blockptr[k]]).de[j] in DirectoryEntry;

for i in UsedInode, for j=0 to 11, !(i.Blockptr[j]=0) =>
<i,d.b[i.Blockptr[j]]> in contents;

for i in UsedInode, for j=0 to 11, !(i.Blockptr[j]=0) =>
d.b[i.Blockptr[j]] in FileBlock;

for j=0 to d.s.NumberofInodes-1, for itb in InodeTableBlock,
for ibb in InodeBitmapBlock, true =>
<itb.itable[j], ibb.inodebitmap[j]> in inodestatus;

for de in DirectoryEntry,for itb in InodeTableBlock, !(de.inodenumber = 0) =>
itb.itable[de.inodenumber] in FileInode;

for de in DirectoryEntry,for itb in InodeTableBlock, !(de.inodenumber = 0) =>
<de, itb.itable[de.inodenumber]> in inodeof;

for j in UsedInode, true => <j,j.referencecount> in referencecount;
for j in UsedInode, true => <j,j.filesize> in filesize;
for j=0 to d.s.NumberofBlocks-1, for bbb in BlockBitmapBlock, true =>
<d.b[j],bbb.blockbitmap[j]> in blockstatus;

Figure 9-20: Model Definition Rules for File System

size(InodeTableBlock)=1;
size(InodeBitmapBlock)=1;
size(BlockBitmapBlock)=1;
size(RootDirectoryInode)=1;
for u in UsedInode, u.inodestatus=true;
for f in FreeInode, f.inodestatus=false;
for u in UsedBlock, u.blockstatus=true;
for f in FreeBlock, f.blockstatus=false;
for i in UsedInode, i.referencecount=size(i.~inodeof);
for i in UsedInode, i.filesize <= size(i.contents)*8192;
for b in FileDirectoryBlock,size(b.~contents)=1;

Figure 9-21: Consistency Constraints for File System

175

workload opens and writes several files, closes the files, then reopens the files to verify

that the data was written correctly. To apply our fault insertion strategy to this

workload, we crash the system part of the way through writing the files, then rerun

the workload. The second run of the workload overwrites the partially written files

and checks that the final versions are correct.

Possible sources of errors include incorrect bitmap blocks (caused by discarding

correct cached versions) and incomplete file system operations that leave the disk

image in an inconsistent state. Specifically, incomplete removal and hardlink creation

operations may leave inodes with incorrect reference counts, and incomplete open

operations that create new files may leave directory and inode entries in incorrectly

initialized states. The repair algorithm first traverses the blocks and inodes in the file

system to construct a model of the file system. It then uses the model to compute

correct values for the bitmap blocks and reference counts.

9.6.3 Results

In our tested cases, the algorithm is able to repair the file system and the workload

correctly runs to completion. The generated repair algorithm was invoked immedi-

ately before the application opens the file system. The generated repair algorithm

detects inconsistencies between the block and inode bitmaps and the actual use of

the blocks and inodes. It uses the reachability of the blocks and inodes to generate

the correct values for the block and inode bitmaps. It then updates these bitmaps

with the new correct values.

Without repair, files end up sharing inodes and disk blocks. As a result, the file

contents are incorrect. In addition to repairing the errors introduced by our failure

insertion strategy, our tool is also able to allocate and rebuild the blocks containing

the inode and block allocation bitmaps, allocate a new inode table block, and allocate

a new inode for the root directory. The repair algorithm is limited in that if the entries

describing aspects of basic file system format (such as the size of the blocks) become

corrupted, the tool may fail to correctly repair the file system.

Fsck [5] is a hand-coded file system check and repair utility for the Unix file

176

system. It performs the same basic task, but since it is hand-coded for this specific

task it takes advantage of the developer’s domain specific knowledge of the problem.

For example, fsck can take advantage of backup copies of the superblock, it stores

unlinked blocks and inodes as files in the lost+found directory, and replicates shared

blocks. As a result, fsck can recover information that our automatically-generated

repair algorithm may lose. However, testing and debugging fsck was likely challenging,

and various implementations of fsck have contained errors [4, 2].

9.7 Randomized Fault Injection

In addition to the fault injection experiments previously described, we performed a

more extensive randomized fault injections on two of the benchmarks, Freeciv and

CTAS. These experiments were designed to understand the effectiveness of our data

structure repair technique.

For each experimental run, we injected a single (randomly generated) fault in a

data structure and then monitored whether the application crashed after the fault

was injected. We then repeated the execution multiple times to help us understand

what percentage of the injected faults our repair algorithm enabled the application

to tolerate.

9.7.1 CTAS Results

Our fault injector for CTAS selected a flight plan, a field (either the category,

destination, or origin field) to corrupt, and a corrupt value (between -5,000 and

5,000) to assign to the field. We then ran 1,000 trials with the randomized fault injec-

tor with both a version of CTAS that incorporates a repair algorithm and a version

of CTAS without a repair algorithm. We declared a particular run of CTAS a success

as soon as the 1500th flight plan entered the system.

Figure 9-22 presents the results for the CTAS benchmark. The crashes we observed

without repair were due to segmentation faults. From these results, we can see that

the generated repair algorithm enabled CTAS to recover from all of the injected

177

errors. Notice that many of the injected faults do not cause either version to crash.

This can happen because CTAS does not use the value, the value does not cause

CTAS to perform an illegal operation, or the faulty value does not violate any of the

consistency properties that CTAS expects from the flight plan data structure.

Version Number of Successful Runs (out of 1,000)
Repair 1,000

No Repair 715

Figure 9-22: Results of Randomized Fault Injection for CTAS

9.7.2 Freeciv Results

Our fault injector for Freeciv selected a game round, a game tile, and a corrupt

value (between -5,000 and 5,000) to assign to the field. We ran 10,000 trials with

the randomized fault injector on both a version of Freeciv that incorporates a repair

algorithm and a version of Freeciv without a repair algorithm. We observed failures

due to looping, segmentation faults, and violated assertions. Figure 9-23 presents the

results for the Freeciv benchmark. Without repair, more than half of the injected

faults caused Freeciv to crash. With repair, approximately 1.2% of the injected faults

caused Freeciv to crash. From these results, we can see that the generated repair

algorithm effectively enabled Freeciv to recover from most injected errors.

The crashes we observed in the presence of repair are due to missing consistency

properties in our specification. It turns out that our specification is missing some

additional consistency properties that constrain the terrain values of tiles. For ex-

ample, we are missing a constraint that ships must always be in the water. When

an ocean tile containing a ship is corrupted and repaired with a land terrain value,

an assertion occurs. It is interesting to note that even though the specification is

missing consistency properties, the generated repair algorithm is still highly effective

in enabling Freeciv to continue to execute.

Note that many of the injected faults do not cause either version to crash. This

178

can happen because game plays out in a way that Freeciv does not use the terrain

value, that the specific terrain value does not cause Freeciv to perform an illegal

operation, or the faulty value is a legal terrain value that does not violate any of the

consistency properties that Freeciv expects from its data structures.

Version Number of Successful Runs (out of 10,000)
Repair 9,886

No Repair 4,589

Figure 9-23: Results of Randomized Fault Injection for Freeciv

9.8 Comparison with Our Previous System

We have developed two specifications for CTAS, Freeciv, and the file system: one

that requires the developer to provide external consistency constraints to explicitly

translate the repaired model to the data structure [14], and the specifications discussed

in this dissertation, which use goal-directed reasoning to automatically generate this

translation. We found that the new specifications were much simpler to write because

goal-directed reasoning eliminated two important potential sources of errors. First,

because our new system automatically generated the data structure updates, we did

not have to develop a (potentially buggy) set of external consistency constraints to

translate the repaired model back into the concrete data structures. Second, and more

importantly, our new system eliminated the possibility that the data structure repair

algorithm could generate a consistent model with no corresponding data structure.

With our old system, the developer had to reason about all of the potential repair

sequences to determine if any such sequence might generate such a repaired model.

Moreover, the only way to eliminate a repair sequence that produced a repaired

model with no corresponding data structure was to develop additional consistency

constraints to eliminate problematic repair sequences.

Another advantage is that the new specifications for Freeciv and the Linux file

system are approximately 14% smaller than the old specifications. For CTAS, the new

179

system enabled us to add some additional constraints while maintaining a specification

of approximately the same size.

We did not develop an AbiWord specification for the previous system. While it

is difficult to estimate exactly how difficult it would have been to develop such a

specification, we believe that it would have been much more difficult than developing

the specification for our current system. Specifically, we believe that our specification

would have allowed repaired models with no corresponding data structures. Moreover,

it would have been impossible to develop additional consistency constraints that would

have ruled out these repaired models. The only recourse would have been to reason

about the potential repair sequences that the system could have performed in an

attempt to determine if the repair sequences would actually generate a repaired model

with no corresponding data structure.

Specifically, our initial AbiWord specification would likely have had a set con-

taining the fragments in the document and a relation modelling the linking relation

between these fragments. If the previous repair algorithm added an object to this

set without updating the linking relation (in the old system there was no way to

state the correspondence between the set and the relation), it would have generated

a consistent model that does not correspond to any data structure. As a result, the

previous repair algorithm would fail to generate a consistent data structure.

Goal-directed reasoning eliminates this possibility — because it maintains the

connection between the concrete data structure and the abstract model, any addition

to the set also updates the relation. Our new system therefore ensures that when-

ever the algorithm updates the set, it also appropriately updates the relation and

the concrete data structures. The net effect is that the developer can simply write

the specification and be assured that the repaired data structures will satisfy the

consistency properties.

We did not develop a specification for the x86 emulator for our previous system.

We believe, however, that our specification for the previous system would not have

produced repaired models with no corresponding data structures. The primary bene-

fits for this benchmark are therefore the elimination of the possibility of errors in the

180

external consistency constraints and a shorter specification.

9.9 Discussion

We found it easy to write the consistency specifications for the data structures that

our study focused on without having a deep understanding of the applications. Our

results show that if the consistency specification detects an error, data structure repair

is likely to enable the application to continue to execute successfully.

Two of our benchmarks, the parallel x86 emulator and the Linux file system, were

able to use redundant information to repair the data structures with correct values.

The repair routine was able to regenerate the correct values for the size of the cache

structure in the x86 emulator and the block and inode bitmaps in the file system

benchmark. The remaining benchmarks replace inconsistent values with possibly dif-

ferent values that satisfy the consistency properties. It is interesting to note that

these benchmark applications continued to execute even if the repair algorithm re-

paired the data structure with the “wrong” value provided that this value makes the

data structure consistent.

All of specifications were partial. They only contained constraints for specific

data structures in the application, and only some of the consistency properties for

these parts. Our results show that partial specifications can give significant benefits.

Our specification for the Freeciv benchmark was missing invariants that constrain the

terrain field, yet data structure repair was able to successfully repair inconsistencies

in this field.

We observed some scaling issues with the node pruning step. The node pruning

step searches for a set of nodes that when removed from the repair dependence graph

gives a repair algorithm that can repair any constraint violation and terminates.

This search is exponential in the number of nodes it searches. While we were able

to generate repair algorithms for all of the specifications, many of the specifications

were close to the limit of what our current node pruning algorithm can reasonably

handle. However, we believe that improvements to the search strategy and to the

181

node pruning heuristics would significantly help this problem.

Determining when the consistency specification should be checked is a significant

issue in incorporating data structure repair. One approach is to check and possibly

repair the consistency properties when a data structure first enters the system. We

used this approach for the file system and CTAS benchmarks. A second approach

is to perform the checks when a data structure is updated. We used this approach

for the piece table in AbiWord and the cache in the parallel x86 emulator. A third

approach is to simply periodically performs checks on the data structure. We used this

approach in Freeciv. Ideally, it is best to check the consistency properties as close as

possible to the original error to prevent the inconsistency from causing the application

to produce unacceptable behavior or crashing or propagating further through the data

structures.

When we chose the benchmarks for our study, we found that many software errors

fell outside the scope of our technique. In these cases, the software system often

simply performed the wrong action. This result of these incorrect actions was that

the software typically performed a task incorrectly or, in some cases, it crashed.

In these cases, data structure repair is not relevant as these errors do not manifest

themselves as a data structure inconsistency.

While performing this study, we identified many important questions that were

outside the scope of the current study. It is unclear how much effort is required for

the developer to write full specifications for an application. To address this issue

we are currently working on automatically inferring these specifications. This work

uses Daikon [16] to automatically infer data structure invariants, and then translates

the Daikon invariants into the data structure consistency specifications used by the

specification compiler. This tool can automatically infer many consistency properties,

and the developer can augment the inferred specification with additional properties

or remove undesired properties.

Furthermore, it is also unclear whether the developer would accidentally leave

important properties out of these specifications. It may be possible to test how

well the specification covers the consistency properties by randomly injecting faults

182

into the data structures and investigating the cause of any unacceptable behavior or

crashes that occur.

Another issue with full specifications is the overhead of checking such specifi-

cations. While the overheads we observed were insignificant, these overheads may

be significant if the repair algorithm checked consistency properties for every data

structure in the application.

The next step is perform an evaluation in which we first develop a consistency

specification for an application, then find errors in the application, and finally test

whether the repair algorithm enables the software to recover from these errors. This

evaluation is more difficult to perform because it requires understanding the complete

code for several applications and then writing a complete specification for each of

these application. However, this evaluation more closely mimics how we expect data

structure repair to be deployed.

Our experience using data structure repair has helped us discover properties that

make applications amenable to this technique. One issue is whether the state in the

application are easy to access. It is much easier to write a consistency specification for

a few global data structures than to write a consistency specification for thousands

of local variables. Furthermore, it is much easier to write a consistency specification

if these data structures are either well-specified or easily understood. A related issue

is whether the data structures are simple to decode. Our system works well for

standard pointer-based heap structures. However, it is difficult to write a specification

for our current system that parses information stored as a complex textual string

(such as an HTML document). Another issue is that the data structures must have

important consistency properties for the technique to be useful. It is possible to write

data structures for which nearly all states correspond to legal values. Since such

data structures are never inconsistent, data structure repair is not useful. Finally,

the application must be important enough that the developer is motivated to write

consistency specifications.

183

184

Chapter 10

Related Work

We survey related work in software error detection, traditional error recovery, manual

data structure repair, and databases.

10.1 Rebooting

Rebooting provides a common approach to error recovery — when a system enters

an unresponsive or erroneous state users simply reboot the system. Rebooting is

a remarkably effective method to recover from errors provided that the system can

tolerate losing all of its volatile state and the downtime necessary to reboot the

system. While this is acceptable for some systems, there are many systems that

cannot tolerate this loss.

Recurring problematic inputs are a significant problem for the rebooting solution.

If a system has a problematic recurring input, rebooting will not be successful, the

system will simply crash again when it attempts to reprocess the problematic input.

Inconsistencies in persistent state are also a significant problem: rebooting will not re-

initialize the persistent state, and therefore when the application processes this state

it will crash again. If the application is in the process of updating persistent state

when it is rebooted, it may leave this persistent state in an inconsistent state. When

it reboots, the inconsistent persistent state may cause the application to produce

unacceptable results or even crash.

185

Recently, this rebooting technique has been extended to enable rebooting a mini-

mal set of components rather than the complete system [9]. This approach divides a

computation into many individually rebootable modules. The system reboots a min-

imal set of modules to recover from an inconsistent state. Note that this approach

still suffers from the persistent state problem previously described.

10.2 Checkpointing

Many applications run for long periods of time, and transient errors in such computa-

tions can result in losing large amounts of work. In this context, checkpointing serves

to avoid the data loss caused by transient errors during a computation [38, 31, 12, 37].

Checkpointing periodically saves the state of the computation, and if the computation

crashes, recovery is used to restart the computation from the latest safe point. It has

been commonly used in long running scientific computations.

Checkpointing provides correctness guarantees that data structure repair does not.

Provided that there are no latent errors stored in the checkpointed state, when an

application is restored from a checkpoint, the data structures are completely correct.

When an inconsistent data structure is repaired, it may differ from the data structure

that a correct execution would have produced.

However, if the checkpointed state is inconsistent due to a latent error, the restored

application will run on inconsistent data structures and may produce unacceptable

results or even crash. Furthermore, checkpointing is limited in that it cannot handle

recurring deterministic errors because recovering from the checkpointed state will

simply result in the application crashing repeatedly when the same erroneous code is

executed. It is also difficult to perform actions that affect the physical world or that

communicate with external systems in checkpointed systems. The problem is that

if the system crashes, the restarted application does not know whether these actions

were performed after the latest checkpoint. As a result the application may repeat

these actions when the system is recovered from a checkpoint. Since data structure

repair does not rely on reverting the execution of an application to a previous point,

186

it enable applications to execute through erroneous computations, support actions

that affect the physical world, and communicate with external systems.

10.3 Transactions

Database systems use a combination of logging and replay to avoid the state loss

normally associated with rolling back to a previous checkpoint [18]. Transactions

support consistent atomic operations by discarding partial updates if the transaction

fails before committing. Researchers have recently added hardware support for trans-

actional memory [7]. Transactional memory allows normal applications to incorporate

the advantages of transactions. These techniques allow a software system to revert

to a completely correct state provided that all erroneous operations were reverted.

However, if a software system has performed an operation that cannot be rolled back

since the last consistent state, these techniques cannot be used. As a result, it is dif-

ficult to build transactional systems that interact with the physical world or external

systems. Furthermore, if a transaction has a recurrent error, dependent transactions

will not be executed and the original transaction will be aborted. Some systems may

loop in this situation, these systems may repeatedly retry the transaction every time

the recurrent error causes it to fail. Data structure repair allows the computation to

make progress in these situations.

There has recently been renewed interest in applying many of these classical tech-

niques in new computational environments such as Internet services [30]. The ROC

project has developed an undoable email system. This system is designed to address

latent user errors by enabling the user of the email system to rewind the email system

to the point at which a configuration error was made, repair the configuration error,

and then replay all of the subsequent operations. This allows the user to retroactively

repair configuration errors.

187

10.4 Manual Data Structure Repair

The Lucent 5ESS telephone switch [21, 20, 24, 19] and IBM MVS operating sys-

tem [29] use inconsistency detection and repair to recover from software failures. The

software in both of these systems contains a set of hand-coded procedures that peri-

odically inspect their data structures to find and repair inconsistencies. The reported

results indicate an order of magnitude increase in the reliability of the system [18].

Fsck [5], chkdsk [3], and scandisk detect and repair inconsistencies in file sys-

tems. These applications consist of hand-coded procedures that inspect file systems

at boot time to find and repair any inconsistencies. They are primarily targeted at

inconsistencies caused by improperly shutting down the computer. These hand-coded

applications use domain-specific repairs such as storing the contents of unlinked in-

odes and blocks in files to enable the user to recover their contents, replicating any

blocks that are shared between files, and recovering file system layout information

from redundant super blocks. As a result of these domain-specific repair actions,

the hand-coded file system repair utilities may preserve more information than our

automatically-generated repair algorithms. While our automatically-generated re-

pair algorithms do not currently perform these domain-specific repair actions, some

of these repair actions may be general enough that future versions of repair system

might include them. Finally, the hand-coded repair algorithms have the potential to

be more efficient. Our automatically-generated repair algorithms construct abstract

models of the entire data structure. Hand-coded repair algorithms may be able to

check the constraints directly on the data structure or to optimize what information

is stored in auxiliary data structures. While we have not performed any experiments

that compare the performance of our automatically-generated repair algorithms to

hand-coded repair algorithms, we expect that developers can more easily optimize

hand-coded repair algorithms.

Testing and debugging these hand-coded repair algorithms can be challenging.

The developer must reason about all of the possible ways that a file system may be

corrupted, and about the effects of repair actions on arbitrarily broken file systems.

188

This requires that the developers write code that is highly defensive and makes no

assumptions about the state of file system. It is not surprising that various implemen-

tations of file system repair utilities have contained serious errors [4, 2]. We believe

that testing and debugging the specifications used to automatically generate repair

algorithms is likely to be easier than testing and debugging hand-coded repair al-

gorithms, and therefore, automatically-generated repair algorithms are less likely to

contain errors.

10.5 Constraint Programming

Researchers have incorporated constraint mechanisms into programming languages.

One such system is Kaleidoscope [26]. The developer is intended to write applica-

tions using a hybrid of imperative style programming and constraints. Kaleidoscope

contains a constraint solver, and the imperative application operates by adding and

removing constraints to and from the set of constraints to be solved. The developer

can use constraints to define a variables in terms of other variables, and then the con-

straint solver automatically updates that value of the variable whenever the variables

it depends on are updated. Programmers are intended to use this functionality to

write constraint to relate multiple values, then only update one of these values and

rely on the constraint solver to update the remaining values. This constraint solving

framework can be viewed as a form of data structure repair in which the user per-

forms an operation and the constraint solver updates the state to satisfy any violated

constraints.

Kaleidoscope does not include any analog of our model-based approach, and as

a result, it can be very difficult if not impossible to express constraints on recursive

data structures or other heap structures containing multiple elements. Furthermore,

Kaleidoscope constraints do not include quantifiers. As a result, a developer cannot

write constraints that apply to an entire class of objects as he or she could using our

data structure repair tool. Kaleidoscope constraints are applied to values within a

constraint solver, and not to the arbitrary data structures that our data structure

189

repair tool supports. Finally, Kaleidoscope does not provide a guarantee that it can

satisfy the constraints: if it cannot simultaneously satisfy all constraints, it simply

exits with an error.

Kaleidoscope uses a constraint solver for all computation (except branching and

adding or removing constraints) in the application. The author notes that “Overall,

the programmer still pays a performance penalty for using constraint imperative

programming over conventional imperative programming based on these language

implementations with exclusively runtime optimizations.” Since data structure repair

can be performed infrequently, it likely has lower overheads.

Rule-based programming [28, 25] is a related technique in which the developer

writes rules with a test condition that, if true, causes an action to take place. The

rule-based systems are extensions to imperative programming languages that allow

the developer to specify a set of rules. Each rule consists of a condition to be evaluated

and an imperative action. If the execution of the application causes the condition

to be true, the corresponding action is executed. This mechanism can be used as a

framework to enforce constraints, since the conditions can test for constraint violations

and the actions can repair these violations. While the rule based system provides

a flexible framework for enforcing constraints, it has all of the problems of hand-

coded repair routines: the developer must manually develop imperative code to repair

constraint violations and then must manually reason that the evaluation of the rules

eventually terminates. Our specification compiler automates the generation of the

repair code and the reasoning to determine that repairs terminate.

10.6 Integrity Management in Databases

Database researchers have developed integrity management systems that enforce

database consistency constraints [11, 36, 10]. These systems typically operate at

the level of the tuples and relations in the database, not the lower-level data struc-

tures that the database uses to implement this abstraction. Ceri and Widom have

developed a system that assists the developer in creating a set of production rules that

190

maintain the integrity of a database [11]. Database production rules consist of three

components: a list of transactions that trigger the rule, a condition to evaluate, and

an action to perform if the condition is true. This research automatically generates

the list of transactions that trigger a given repair and the condition to be evaluated.

The developer has to manually specify the repair action. This research uses a trig-

gering graph to determine whether a set of production rules could potentially trigger

each other indefinitely. The triggering analysis is a syntactic analysis that analyzes

whether a rule’s action performs an update that is mentioned in the list of transac-

tions that trigger another rule. This analysis does not consider the conditions in the

production rules. For example, this analysis cannot determine that a production rule

that triggers on a given relation, checks some condition on that relation, and poten-

tially performs a repair on that relation may terminate. Our termination analysis is

considerably more sophisticated: it reasons about the conditions under which a repair

may be performed, the actual repair action, and the predicates in other constraints.

For example, our analysis can determine that a repair action that repairs a relation

does not trigger itself indefinitely.

The approach of Ceri and Widom has been extended to enable their system to

automatically generate both the triggering components and the repair actions for

constraints written in standard conjunctive form [10]. This research extends the

previously mentioned technique to add the ability to automatically generate repair

actions. This work introduces a triggering hypergraph to reason about termination.

The triggering hypergraph extends the previous triggering graph to allow the system

to eliminate repair actions that may cause non-termination. However, this graph is

constructed using the same basic criteria and therefore suffers the same problems.

This research introduces the concept of state dependent repairs, repair actions that

may fail depending on the initial state. These actions are backed up by state in-

dependent repairs, repair actions that are guaranteed to succeed regardless of the

original state. While our current repair system only generates state independent

repair actions, we could easily augment it to support state dependent repair actions.

Researchers have also developed a database constraint analysis system for Horn

191

clause constraints and schema constraints (which can constrain a relation to be a func-

tion) [36]. This system presents a constraint analysis to determine after a database

update what operations must be performed to maintain a set of consistency con-

straints. Our system supports a broader class of constraints (logical formulas instead

of Horn clauses) and automatically generates repair actions for constraint violations.

A key difference between these systems and our system is the form of the data that

the repair algorithms operate on. While these systems all repair relational databases,

our system repairs the low-level data structures in an application. As a result, our

system has to construct an abstract model, translate model repairs into data updates,

and reason about this translation. Since these systems repair relational databases,

they do not have to address any of these issues. Our system also supports constraints

that relate the value of a field to an expression involving the size of a set or the

size of an image of an object under a relation. Our system uses partition informa-

tion to improve the precision of the termination analysis, enabling the verification of

termination for a wider class of constraint systems.

10.7 Data Structure Repair using Search

Khurshid et al. have developed a data structure repair system using search with

backtracking [23]. Note that this research was performed after the work described in

this dissertation. This system uses Java consistency checking methods as imperative

specifications of data structure properties. This system instruments the execution of

the consistency checking method to record field accesses. It then uses backtracking

search to find field assignments that cause the method to return true. For primitive

fields, it uses symbolic execution to construct path conditions that are evaluated using

CVC Lite. For object fields, it tries assigning the field to either null, a newly allocated

object, or an object that has already been accessed.

One advantage of this approach is that it may be able to handle systems of con-

straints that our termination analysis rejects. The disadvantages of this approach

are that there is no guarantee that the specification is satisfiable, the search may fail

192

to terminate for certain constraints, it is unclear how well this method can handle

low-level memory layout errors, and it is hard to reason about what repairs may be

performed.

10.8 Specification-Based Data Structure Repair

In our previous research, we have developed a specification-based repair system that

uses external constraints to explicitly translate the model repairs to the concrete data

structures [14, 15, 13]. The primary disadvantage of this approach in comparison with

the approach presented in this dissertation is a potential lack of repair effectiveness

— there is no guarantee that the external constraints correctly implement the model

repairs, and therefore no guarantee that the concrete data structures will be consistent

after repair. Writing external consistency constraints for linked data structures can

be very difficult; if repairs potentially add objects to the linked data structure, the

developer has to explicitly write constraints to ensure that these new objects are

properly linked. Such constraints could not be expressed in the consistency constraint

language. Our current technique effectively recovers these implicit linking constraints

from the model definition rules.

A secondary disadvantage is that this system requires the developer to write a

set of external consistency constraints. As described in Section 9.8 the external

consistency constraints represent an additional specification burden. Furthermore,

since the external consistency constraints are only used when a repair is performed,

it may be difficult to test that they are correct.

10.9 File Systems

Some journaling or log-structured file systems are always consistent on the disk,

eliminating the possibility of file system corruption caused by a system crash [6,

33]. While such file systems eliminate inconsistencies caused by improper system

shutdowns, hardware and software errors can still corrupt the file system. As a

193

result, such file systems still need check and repair utilities. Data structure repair

remains valuable even for these systems in that it can enable the system to recover

from file system corruption.

10.10 Object Modelling Languages

Our specification language borrows heavily from object modelling languages such as

Alloy [22] or UML [32]. In particular, Alloy uses a similar set and relation based

abstraction to model systems. However, the requirements that the repair algorithm

generation problem places on our specification language have resulted in some signifi-

cant differences. Data structure repair requires our specification language to establish

a direct connection between our abstract model and the data structures. While Alloy

has been used to model data structures, Alloy does not include an equivalent to our

model definition language or our structure definition language to establish a direct

connection between the abstract model and the actual data structures. As a result,

one cannot easily use Alloy to express constraints on physical data structures.

In order to facilitate efficient repair algorithms, we have placed limitations on

the constraints in our consistency constraint language. In general, the flexibility of

the model definition rules enables developer to still express these constraints. For

example, our specification language does not support existential quantifiers, while

Alloy supports existential quantifiers. As a result, certain properties are easier to

state in Alloy. Alloy also includes a transitive closure operation, and as a result it

is very easy to express that a data structure is acyclic. While constraints involving

transitive closures can be expressed in our system by using the model definition rules

to construct relations that contain the transitive closure, this method is less elegant.

Finally Alloy supports many operations on sets including set intersection, set union,

and set difference. While our consistency constraint language does not include these

operations, the model definition rules can be used to construct sets that contain the

result of these operations.

194

Chapter 11

Conclusion

Data structure repair can be an effective technique for enabling software applications

to recover from data structure corruption to continue to execute successfully. A

developer using our model-based approach specifies how to translate the concrete

data structures into an abstract model, then uses the sets and relations in the model

to state key data structure consistency constraints. Our automatically generated

repair algorithm finds and repairs any data structures that violate these properties.

The key components of our repair system are the specification language, goal-directed

reasoning for translating model repairs into data structure updates, and the repair

dependence graph for reasoning about the behavior of the generated repair algorithm.

The key elements of our repair technique are as follows:

• Specification-based Approach: This specification-based approach to data

structure repair allows the developer to use an abstract model to express im-

portant data structure consistency properties.

• Heuristically Close Repaired Data Structures: Our repair technique gen-

erates data structures that are heuristically close the original broken data struc-

ture.

• Automatic Generation of Repair Algorithms: The specification compiler

automatically generates repair algorithms. Our specification compiler contains

195

several mechanisms that allow the specification developer to influence the re-

pair process. These mechanisms include excluding certain repairs, specify costs

associated with repairs, and specifying sources for new objects.

• Goal-Directed Reasoning: Goal-directed reasoning analyzes the model def-

inition rules to automatically translate model repairs into data structure up-

dates. This technique frees the developer from specifying how to translate the

abstract state to the concrete data structures, while still allowing the developer

to utilize the advantages that abstraction provides: a means to classify objects

and a means to separate the complexity arising from low-level data structures

implementation details from the consistency properties.

• Repair Dependence Graph: The specification compiler constructs and an-

alyzes the repair dependence graph to determine whether the generated repair

algorithms terminate. This graph captures the dependences between the consis-

tency constraints, the repair actions, and the model definition rules. This graph

supports formal reasoning about the effect of repairs on both the abstract model

and the data structures. We have identified a set of conditions on the repair

dependence graph that when satisfied ensure that all repairs successfully termi-

nate. We have developed an algorithm that removes nodes from the graph to

eliminate problematic cycles. These node removals prevent the repair algorithm

from choosing repair strategies that may not terminate. Furthermore, the de-

veloper can use the repair dependence graph to reason about the behavior of

the generated repair algorithms, or if the specification compiler was unable to

generate a repair algorithm to understand why the specification compiler failed.

We have evaluated our repair tool using five different applications. Our repair

tool enabled these applications to recover from otherwise fatal data structure cor-

ruption errors and to continue to execute successfully. Even though this evaluation

produced positive results, several questions remain unanswered. How hard is it to ob-

tain specifications that have good coverage of the properties that software errors will

violate? How well will data structure repair work on a broader class of applications

196

with (presumably) a broader class of errors? The next step would be to perform an

evaluation in which we first develop a consistency specifications for a broader class

of applications, find errors in the applications, and finally test whether the repair

algorithm enables the applications to acceptably recover from these errors.

We believe that our specification-based approach promises to substantially reduce

the development costs and increase the effectiveness of data structure repair, enabling

its application to a wider range of software applications.

11.1 Future Work

Our experience with data structure repair suggests many future research directions.

• Checking Efficiency: Although our current implementation is able to effi-

ciently check many specifications, certain applications may require more fre-

quent checking of consistency properties or checking larger data structures than

our current system can support. Partially checking specifications would enable

more frequent consistency checking. Approaches to partial checking include:

using hardware support to incrementally check only the changed portions of

data structures, using static analysis to eliminate unnecessary checks, and only

checking consistency properties for the state that the current method will access.

• Specification Language Improvements: Some consistency properties can-

not easily be expressed in the current specification language (for example con-

straints on floating point numbers) and certain data structures are difficult to

parse (for example HTML documents). Further experience using the current

system will likely suggest ways that the specification language should be im-

proved to more easily parse common data structures and to be able to express

more of the important consistency properties for data structures.

The current specification language requires that the developer abstract any

state that a consistency constraint references. For some simple consistency

properties, this requirement makes specifications needlessly longer. Allowing

197

consistency constraints to directly reference fields and array elements would

allow the developer to avoid writing unnecessary model definition rules. This

would also result in more efficient consistency checking as the abstract models

would be smaller.

• Repair Generation Improvements: The current system is somewhat lim-

ited in the types of repairs that it can generate. For example, for file system

blocks that are illegally shared by two files, the specification compiler currently

generates repairs that remove the block from one of the two files. A better repair

option might be to replicate the block, leave the original in one file, and put

the replica in the other file. Further experience examining applications would

likely suggest other such repair actions that should be generated by the specifi-

cation compiler. Furthermore, the current repair actions often rely on the form

of a constraint. For example, the current repair algorithm satisfies inequalities

by changing the value on the left hand side. Future repair algorithms might

generate better repairs by performing repairs on the values appearing in the

right hand side. Such a system should also include mechanisms to allow the

developer to specify preferences as to how the repair algorithm should repair a

given basic proposition.

• Developer Interface Improvements: The current specification compiler

generates repair algorithms with little input from the developer. As a result,

it sometimes selects undesired repair actions. A more interactive system might

provide a graphical interface that allows the developer to easily provide guid-

ance for selecting the best repair. Another issue is that the termination analysis

is conservative. In some cases, the developer might know that a given repair

action will not violate a constraint even though the specification compiler is un-

able to show this. If the developer provided this information to the specification

compiler, the specification compiler may be able to generate better repairs or

even generate repair algorithms in which it would otherwise fail to generate a

terminating repair algorithm.

198

• Specification Coverage: One open question with this research is how hard

is it to obtain specifications of all the data structures in the application. To

address this issue we are currently working on automatically inferring these

specifications. This work uses Daikon [16] to automatically infer data structure

invariants, and then translates the Daikon invariants into the data structure

consistency specifications used by the specification compiler. A related issue is

that the data structure specifications may under specify the consistency con-

straints. One possible way to address this issue is to randomly inject faults into

the data structures. If data structure repair does not enable the application to

recover from one of these errors, the injected fault may have violated one of the

unstated consistency constraints. The developer may be able analyze the crash

to discover what constraint was missing. It would be interesting to empirically

investigate how effective this randomized fault injection technique is at finding

unstated invariants.

• Related Repair Techniques: Data structure repair can be viewed as a

method to prevent the propagation of faults. The original error causes a data

structure invariant to be violated, which without repair may further propagate

eventually resulting in a crash. Data structure repair prevents the error from

propagating through data structure inconsistencies. However, software errors

can propagate through other means. For example, the effects of a software error

can propagate through application control flow. Developing other techniques

that isolate the effects of software errors would likely allow the construction of

more robust software applications.

11.2 Implications

Data structure repair may be a first step in changing how we address errors in software.

Our current strategy for handling software errors is to try to construct error free

software. We try to write software with as few errors as possible. Unfortunately, we

make some errors in this process. We attempt to find these errors by using tests that

199

thoroughly exercise the application. When a test uncovers an error, the developer

studies the code to understand the underlying error, and then patches the code to

remove this error. Unfortunately, testing does not catch or correct all errors. Errors

may not be triggered by the tests, or the developer may introduce new errors with

the patch.

The implicit assumption in the current software development methodology is that

it is best to attempt to construct perfect software. Unfortunately, one result of

this perspective is that developers make little effort to enable software to recover

from errors. The problem with this approach is that humans are imperfect, and as

a result, the software systems that we construct inevitably have errors. Since we

typically do not design software systems to be robust with respect to internal errors,

they frequently fail catastrophically when an error occurs.

Data structure repair is part of a fundamentally different approach to handling

software errors. This approach suggests that the way to handle errors is to recover and

proceed even in the absence of correctness guarantees. The philosophy behind data

structure repair acknowledges that software systems contain errors. While we would

like to construct completely correct software systems, unfortunately, in practice it is

currently impossible to develop correct software systems for any reasonably complex

task. Instead, this new approach focuses on developing software systems in such a

way that systems can tolerate software errors without causing unacceptable behavior.

If we look at complex systems in other disciplines, we find out that they have

both errors and mechanisms to handle their errors. For example, complex biological

systems incorporate repair mechanisms to more effectively tolerate failures; small

failures in biological systems typically do not result in death. Our bodies include

mechanisms to repair both macroscopic and microscopic damage: our bodies can

repair cuts, broken bones, DNA transcription errors [8], and damage inflicted by

bacteria and viruses.

Our automatically-generated data structure repair algorithms take the first step

in bringing repair to software systems. It enables software systems to repair data

structure consistency violations. The goal of this line of research is to enable software

200

systems to survive the damage caused by errors, and to continue to provide useful

services.

This technique may provide us with a new way of engineering software systems.

We currently design software systems by assuming that all operations have been

executed correctly. Unfortunately, for large, long-running systems this assumption

is almost certainly false. Since this assumption is deeply ingrained in the software

system’s design, the system is extremely brittle to any errors and violations of this

assumption caused by a single error will likely cause the system to fail catastrophically.

In the longer run, data structure repair may play an important role in making

software systems more robust to these kinds of errors. We may be able to build soft-

ware systems that are designed to extensively incorporate data structure repair and

to communicate with the repair system. This would allow us to develop, for example,

an air traffic control system that can automatically heal itself from data structure

corruption errors and inform the user if any information may be untrustworthy. Fu-

ture data structure repair systems may bring positive aspects of biological systems to

computer systems: robustness to small errors, adaptability to unexpected situations,

and an understanding of the software system’s health to the user.

201

202

Bibliography

[1] Center-tracon automation system. http://www.ctas.arc.nasa.gov/ .

[2] Changelog in reiserfsprogs distribution. ftp://ftp.namesys.com/pub/

reiserfsprogs/.

[3] Chkdsk. http://www.microsoft.com/resources/documentation/Windows/

XP/all/reskit/en-us/Default.asp?url=/resources/documentation/

windows/xp/all/reskit/en-us/prmb tol pwfd.asp.

[4] E2fsprogs release notes. http://e2fsprogs.sourceforge.net/

e2fsprogs-release.html.

[5] Ext2 fsck manual page. http://e2fsprogs.sourceforge.net/.

[6] Whitepaper: Red Hat’s new journaling file system: ext3.

http://www.redhat.com/support/wpapers/redhat/ext3/index.html.

[7] C. Scott Ananian, Krste Asanović, Bradley C. Kuszmaul, Charles E. Leiserson,

and Sean Lie. Unbounded transactional memory. In 11th International Sympo-

sium on High Performance Computer Architecture (HPCA-11), February 2005.

[8] V. A. Bohr, K. Wassermann, and K. H. Kraemer. DNA Repair Mechanisms

(Alfred Benzon Symposium No. 35). Copenhagen:Munksgaard, 1993.

[9] George Candea and Armando Fox. Recursive restartability: Turning the reboot

sledgehammer into a scalpel. In HotOS-VIII, May 2001.

203

[10] Stefano Ceri, Piero Fraternali, Stefano Paraboschi, and Letizia Tanca. Automatic

generation of production rules for integrity maintenance. ACM Transactions on

Database Systems, 19(3), September 1994.

[11] Stefano Ceri and Jennifer Widom. Deriving production rules for constraint main-

tenance. In International Conference on Very Large Data Bases, pages 566–577,

1990.

[12] K.M. Chandy and C.V. Ramamoorthy. Rollback and recovery strategies. IEEE

Transactions on Computers, C-21(2):137–146, 1972.

[13] Brian Demsky and Martin Rinard. Automatic data structure repair for self-

healing systems. In First Workshop on Algorithms and Architectures for Self-

Managing Systems, June 2003.

[14] Brian Demsky and Martin Rinard. Automatic detection and repair of errors in

data structures. In Proceedings of the 18th Annual Conference on Object-Oriented

Programming Systems, Languages and Applications, October 2003.

[15] Brian Demsky and Martin Rinard. Static specification analysis for termination

of specification-based data structure repair. In 14th. IEEE International Sym-

posium on Software Reliability Engineering, November 2003.

[16] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.

Quickly detecting relevant program invariants. In Proceedings of the 22nd Inter-

national Conference on Software Engineering, June 2000.

[17] Sudhakar Govindavajhala and Andrew W. Appel. Using memory errors to attack

a virtual machine. In IEEE Symposium on Security and Privacy, May 2003.

[18] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993.

[19] Timothy Griffin, Howard Trickey, and Curtis Tuckey. Generating update con-

straints from PRL5.0 specifications. In Preliminary report presented at AT&T

Database Day, September 1992.

204

[20] Neeraj K. Gupta, Lalita Jategaonkar Jagadeesan, Eleftherios E. Koutsofios, and

David M. Weiss. Auditdraw: Generating audits the FAST way. In Proceedings

of the 19th International Conference on Software Engineering, 1997.

[21] G. Haugk, F.M. Lax, R.D. Royer, and J.R. Williams. The 5ESS(TM) switching

system: Maintenance capabilities. AT&T Technical Journal, 64(6 part 2):1385–

1416, July-August 1985.

[22] Daniel Jackson. Alloy: A lightweight object modelling notation. Technical Re-

port 797, Laboratory for Computer Science, Massachusetts Institute of Technol-

ogy, 2000.

[23] Sarfraz Khurshid, Iván Garćıa, and Yuk Lai Suen. Repairing structurally com-

plex data. In Proceedings of the 12th International SPIN Workshop on Model

Checking of Software (SPIN), August 2005.

[24] David A. Ladd and J. Christopher Ramming. Two application languages in

software production. In USENIX 1994 Very High Level Languages Symposium

Proceedings, October 1994.

[25] Diane Litman, Peter F. Patel-Schneider, and Anil Mishra. Modeling dynamic

collections of interdependent objects using path-based rules. In Proceedings of the

12th Annual Conference on Object-Oriented Programming Systems, Languages

and Applications, October 1997.

[26] Gus Lopez. The Design and Implementation of Kaleidoscope, A Constraint Im-

perative Programming Language. PhD thesis, University of Washington, April

1997.

[27] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for test-

ing Java programs. In Proceedings of the 16th IEEE Conference on Automated

Software Engineering, November 2001.

[28] Anil Mishra, Johannes P. Ros, Anoop Singhal, Gary Weiss, Diane Litman, Pe-

ter F. Patel-Schneider, Daniel Dvorak, and James Crawford. R++: Using rules

205

in object-oriented designs. In Proceedings of the 11th Annual Conference on

Object-Oriented Programming Systems, Languages and Applications, July 1996.

[29] Samiha Mourad and Dorothy Andrews. On the reliability of the IBM MVS/XA

operating system. IEEE Transactions on Software Engineering, September 1987.

[30] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen,

James Cutler, Patricia Enriquez, Armando Fox, Emre Kcman, Matthew

Merzbacher, David Oppenheimer, Naveen Sastry, William Tetzlaff, Jonathan

Traupman, and Noah Treuhaft. Recovery-oriented computing (ROC): Motiva-

tion, definition, techniques, and case studies. Technical Report UCB//CSD-02-

1175, UC Berkeley Computer Science, March 15, 2002.

[31] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent

checkpointing under Unix. In Usenix Winter Technical Conference, pages 213–

223, January 1995.

[32] Rational Inc. The Unified Modeling Language. http://www.rational.com/uml.

[33] Mendel Rosenblum and John K. Ousterhout. The design and implementation

of a log-structured file system. In Proceedings of the 13th ACM Symposium on

Operating Systems Principles, October 1991.

[34] Beverly D. Sanford, Kelly Harwood, Sarah Nowlin, Hugh Bergeron, Harold Hein-

riches, Gary Wells, and Marvin Hart. Center/tracon automation system: Devel-

opment and evaluation in the field. In 38th Annual Air Traffic Control Associa-

tion Conference Proceedings, October 1993.

[35] Michael Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben

Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert

Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matthew

Frank, Saman Amarasinghe, and Anant Agarwal. The Raw microprocessor:

A computational fabric for software circuits and general-purpose programs. In

IEEE Micro, Mar/Apr 2002.

206

[36] Susan D. Urban and Louis M.L. Delcambre. Constraint analysis: A design

process for specifying operations on objects. IEEE Transactions on Knowledge

and Data Engineering, 2(4), December 1990.

[37] John W. Young. A first order approximation to the optimum checkpoint interval.

Communications of the ACM, 17(9):530–531, 1974.

[38] Youhui Zhang, Dongsheng Wong, and Weimin Zheng. User-level checkpoint and

recovery for LAM/MPI. ACM SIGOPS Operating Systems Review, 39(3):72–81,

2005.

207

