
Automatic Data Structure Repair for Self-Healing Systems

Brian Demsky
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT
We have developed a system that accepts a specification of
key data structure constraints, then dynamically detects and
repairs violations of these constraints, enabling the program
to recover from otherwise crippling errors to continue to ex-
ecute productively. We present our experience using our
system to repair violated constraints in a simplified version
of the ext2 file system and in the CTAS air-traffic control
program. Our experience indicates that the specifications
are relatively straightforward to develop and that our tech-
nique enables the applications to effectively recover from
data structure corruption errors.

1. INTRODUCTION
Any system that operates successfully for an extended pe-

riod of time inevitably sustains and must recover from some
form of damage. Development errors make software systems
vulnerable to self-inflicted damage that may cause the sys-
tem to crash, corrupt key data structures, or otherwise ex-
ecute unacceptably. Data structure corruption can become
especially problematic for persistent data structures since
the corruption persists across system reboots and, unless
repaired, can permanently impair the ability of the system
to execute acceptably.

This paper proposes a new approach to recovering from
data structure corruption. We have developed a tool that ac-
cepts a specification of key data structure consistency prop-
erties [7]. It uses this specification to automatically detect
and repair violations of these consistency properties, en-
abling the system to recover from the inconsistency and con-
tinue to execute successfully within its designed operating
envelope. This technique promises to dramatically increase
the ability of software systems to automatically detect and
recover from data structure corruption errors without the
need for external operator intervention.

Our tool supports several different usage scenarios. It
can be used in stand-alone mode to repair persistent data
structures. It can also be used to repair the volatile data
structures of a running program, with the repair applied
either on program demand or to recover from an execution
error such as an addressing violation.

Our approach involves two data structure views: a con-
crete view at the level of the bits in memory and an abstract
view at the level of relations between abstract objects. The
abstract view facilitates both the specification of the data
structure consistency properties and the reasoning required
to repair any inconsistencies.

∗This research was supported in part by a fellowship from
the Fannie and John Hertz Foundation, DARPA Contract
F33615-00-C-1692, NSF Grant CCR00-86154, and NSF
Grant CCR00-63513.

Each specification contains model definition rules, a set of
internal consistency constraints, and a set of external con-
sistency constraints. The model definition rules identify the
different kinds of objects and relations in the abstract view
and define a translation from the concrete data structure to
the abstract model. The internal consistency constraints
capture the consistency properties of the data structure;
these constraints are expressed at the level of abstract ob-
jects and relations in the model. The external consistency
constraints capture the relationship between the model and
the concrete data structure; our tool uses the external con-
sistency constraints to translate any repairs from the model
back into the concrete data structure. The repair algorithm
operates as follows:

• Inconsistency Detection: It evaluates the constraints
in the context of the current data structures to find
consistency violations.

• Disjunctive Normal Form: It converts each vio-
lated constraint into disjunctive normal form; i.e., a
disjunction of conjunctions of basic propositions. Each
basic proposition has a repair action that will make the
proposition true. For the constraint to hold, all of the
basic propositions in at least one of the conjunctions
must hold.

• Repair: The algorithm repeatedly selects a violated
constraint, chooses one of the conjunctions in that con-
straint’s normal form, then applies repair actions to
all of the basic propositions in that conjunction that
are false. A repair cost heuristic biases the system
toward choosing the repairs that perturb the existing
data structures the least.

We have developed a complete implementation of the data
structure repair tool. The implementation consists of ap-
proximately 13,000 lines of C++ code. The source code for
the tool and sample specifications are available at
http://www.cag.lcs.mit.edu/∼bdemsky/repair.

2. FILE SYSTEM CASE STUDY
We next discuss how our approach can be used to auto-

matically detect and repair inconsistencies in a simplified
version of the ext2 Linux file system. Like many Unix file
systems, this file system has a superblock, an inode for ev-
ery file, and uses bitmaps to facilitate the allocation and
deallocation of inodes and disk blocks.

2.1 Data Layout Declarations
The declarations in Figure 1 specify the layout of data for

selected portions of the file system. The structure definition
language is similar to C with extensions to support packed
bit arrays, a form of structural inheritance, and variable
sized arrays.

The Disk struct declaration specifies that the disk consists
of an array of Block objects, with the superblock stored
in the first disk block and the groupblock stored in the
second disk block. The superblock defines the parameters
of the disk: the size and number of the disk blocks in the
file system, the number of inodes, and the inode for the root
directory. The groupblock contains references to the inode
table and to the inode and block bitmaps. There is a bit
in the block bitmap for each block in the file system and a
bit in the inode bitmap for each inode in the file system. If
the block or inode is currently used, this bit is set to true.
Otherwise, it is set to false.

This file system has many consistency properties and can
become corrupted in many ways. We focus on the following
properties:

1. Presence of File System Structures: Basic file
system structures should be present.

2. Bitmap Consistency: The inode and block bitmaps
should be consistent with the use of the inode and
blocks on the disk.

3. Reference Count Consistency: An inode’s refer-
ence count should be consistent with the number of
directory entries referencing it.

4. Free Counts Correct: The counts for free blocks
and inodes should be consistent.

5. Block Usage Consistency: A given block should be
used by at most one disk structure.

Notice that these constraints are stated at the level of
abstract concepts such as blocks and inodes and not at the
level of bits on the disk. We believe that this is the natural
way that developers think about such constraints and that
they would like to express their consistency properties at
this level of abstraction. The abstract data structure view
allows the developer to think about the data structures at
this level.

2.2 Object Model
Figure 2 presents the object and relation declarations for

the abstract representation used in our example. This ab-
straction contains three main categories of objects: Blocks,
Inodes, and DirectoryEntries. The first declaration in
Figure 2 specifies that the abstract model uses integers to
identify the Blocks (this simplifies the correspondence be-
tween the abstract blocks in the model and the concrete
disk blocks) and that the set of Blocks is partitioned into
UsedBlocks and FreeBlocks. The set of UsedBlocks is fur-
ther partitioned into different sets corresponding to the uses
of blocks in the file system. These sets are the SuperBlock

set, the GroupBlock set, the FileDirectoryBlock set, the
InodeTableBlock set, the InodeBitmapBlock set, and the
BlockBitmapBlock set. The FileDirectoryBlocks set is
further partitioned into the FileBlocks set and the
DirectoryBlocks set. The use of partitions ensures that a

Disk disk;

struct Disk {
Block b[disk.superblock.NumberofBlocks];
label b[0]: Superblock superblock;
label b[1]: Groupblock groupblock;

}

struct Block {
reserved byte[disk.superblock.BlockSize];

}

struct Superblock subtype of Block {
int FreeBlockCount;
int FreeInodeCount;
int NumberofBlocks;
int NumberofInodes;
int RootDirectoryInode;
int BlockSize;

}

struct Groupblock subtype of Block {
int BlockBitmapBlock;
int InodeBitmapBlock;
int InodeTableBlock;
int GroupFreeBlockCount;
int GroupFreeInodeCount;

}

Figure 1: Data Layout Declarations

set Blocks of integer: partition UsedBlocks | FreeBlocks
set UsedBlocks of integer: partition SuperBlock |

GroupBlock | FileDirectoryBlocks | InodeTableBlock |
InodeBitmapBlock | BlockBitmapBlock

set FileDirectoryBlock of integer: DirectoryBlocks |
FileBlocks

set Inodes of integer: partition UsedInodes | FreeInodes
set UsedInodes of integer: partition FileInodes |

DirectoryInodes
set DirectoryInodes of integer: RootDirectoryInode
set DirectoryEntries of DirectoryEntry:
relation blockstatus: Blocks -> string
relation contents: UsedInodes -> FileDirectoryBlocks
relation inodestatus: Inodes -> string
relation referencecount: Inodes -> integer
relation filesize: Inodes -> integer
relation inodeof: DirectoryEntries -> UsedInodes

Figure 2: Object and Relation Declarations

block cannot be used simultaneously in two different disk
structures. Similarly, we have chosen to represent Inodes in
the abstract representation with their integer index in the in-
ode table and appropriately partitioned this set. Finally, the
DirectoryEntries set contains the set of directory entries
in the disk. This set represents the used directory entries in
the file system.

The model uses relations to capture important properties
of the objects in the model and to represent relationships
between the objects. So, the blockstatus relation captures
information in the block bitmap by mapping blocks to the
set {Free, Used}. Similarly, the inodestatus relation maps
Inodes to the set {Free, Used}, capturing the information
in the inode bitmap. The relation referencecount maps
Inodes to the corresponding reference count. The relation
filesize maps Inodes to their corresponding size in bytes.

The contents and inodeof relations capture relationships
between the objects in the model. Specifically, contents

maps UsedInodes to the FileDirectoryBlocks that con-
tain the contents of the file or directory, and inodeof maps
DirectoryEntries to their corresponding UsedInodes.

[], true => 0 in SuperBlock
[], true => 1 in GroupBlock
[], disk.groupblock.InodeTableBlock<

disk.superblock.NumberofBlocks =>
disk.groupblock.InodeTableBlock in InodeTableBlock

[], disk.groupblock.InodeBitmapBlock<
disk.superblock.NumberofBlocks =>
disk.groupblock.InodeBitmapBlock in InodeBitmapBlock

[for i in UsedInode, for itb in InodeTableBlock,
for j=0 to 11], cast(InodeTable,disk.b[itb]).itable[i].
Blockptr[j]<disk.superblock.NumberofBlocks and
!cast(InodeTable,disk.b[itb]).itable[i].Blockptr[j]=0
=> cast(InodeTable,disk.b[itb]).itable[i].Blockptr[j]
in FileDirectoryBlocks

[for j=0 to disk.superblock.NumberofBlocks-1],
!(j in UsedBlocks) => j in FreeBlocks

Figure 3: Model Definition Declarations

[for u in UsedInodes], u.inodestatus=Used
[for f in FreeInodes], f.inodestatus=Free
[for i in UsedInodes], i.referencecount=

sizeof(inodeof.i)
[for i in UsedInodes], i.filesize<=

sizeof(i.contents)*8192
[],sizeof(RootDirectoryInode)=1
[for u in UsedBlocks], u.blockstatus=Used
[for f in FreeBlocks], f.blockstatus=Free
[for b in FileDirectoryBlocks],sizeof(contents.b)=1
[],sizeof(BlockBitmapBlock)=1 and sizeof(SuperBlock)=1
[],sizeof(InodeTableBlock)=1 and sizeof(GroupBlock)=1
[],sizeof(InodeBitmapBlock)=1

Figure 4: Internal Consistency Constraints

2.3 Model Construction
Given the declarations of the objects and relations, we

are now in a position to present the model definition, which
translates the concrete data structure into the abstract model.
Figure 3 presents part of these model definition declarations,
which our tool uses to construct the abstract model. The
intention is that the key high level consistency constraints
will be enforced in the abstract model. Low level validity
constraints (for example, that block references are in a valid
range) are checked during the translation process so that
low level errors are not a concern at the model level.

The first set of declarations specifies the sets of Blocks in
the file system. For example, the first two declarations set
up the SuperBlock set and the GroupBlock set. The omit-
ted declarations define the various sets of Inodes in the file
system, the DirectoryEntries set, and the various relations
in the abstract model. Our tool interprets these definitions
to derive an algorithm that constructs the objects and rela-
tions in the model, setting the stage for the definition and
enforcement of the consistency properties.

2.4 Internal Constraints
Internal constraints capture the consistency properties that

can be expressed using the model alone. We anticipate that
these constraints will typically be used to capture the most
important structural constraints. Figure 4 presents the set
of internal constraints in our example.

The first two constraints in Figure 4 ensure that the
inodestatus relation is consistent with the use of the Inodes.
The third constraint ensures that the referencecount func-
tion returns the number of times an Inode is referenced by
the inodeof relation. The fourth constraint ensures that the
filesize function is consistent with the number of Blocks

SuperBlock={0}
GroupBlock={1}
FileDirectoryBlock={6,8}
BlockBitmapBlock={3}
InodeTableBlock={4}
InodeBitmapBlock={}
FileBlocks={6,...}
DirectoryBlocks={8}
FreeBlocks={2,5,7,...}
FileInodes={0,1}
RootDirectoryInode={2}
FreeInodes={...}
DirectoryEntries={D0,D1...}
blockstatus={〈0, Used〉, 〈1, Used〉, 〈2, Free〉, 〈3, Used〉,

〈4, Used〉, 〈5, Used〉, 〈6, Used〉, 〈7, Free〉, 〈8, Used〉, ...}
contents={〈0, 6〉, 〈1, 6〉, 〈2, 8〉}
inodestatus={}
referencecount={〈0, 1〉, 〈1, 1〉, 〈2, 0〉}
filesize={〈0, 100〉, 〈1, 200〉, 〈2, 8192〉}
inodeof={〈D0, 0〉, 〈D1, 1〉}

Figure 6: Abstract Representation for Corrupted
File System

InodeBitmapBlock={2}
FreeBlocks={5,7,...}
blockstatus={〈0, Used〉, 〈1, Used〉, 〈2, Used〉, 〈3, Used〉,

〈4, Used〉, 〈5, Free〉, 〈6, Used〉, 〈7, Free〉, 〈8, Used〉, ...}
contents={〈0, 6〉, 〈2, 8〉}
inodestatus={〈0, Used〉, 〈1, Used〉, 〈2, Used〉, ...}
filesize={〈0, 100〉, 〈1, 0〉, 〈2, 8192〉}

Figure 7: Changes to the Abstract Representation
of the Corrupted File System

an Inode has. The fifth constraint ensures that the file sys-
tem has a root directory. The next two constraints ensure
that the blockstatus relation is consistent with the use of
the Blocks. The next constraint ensures that a given block
is in at most one file or directory. And the remaining con-
straints ensure that various disk structures exist. As this ex-
ample illustrates, the internal constraints typically capture
the important structural properties of the data structures
and their relationships, and ensure that various parts of the
data structures are consistent with each other.

2.5 Inconsistency Detection and Repair
Figure 5 presents a diagram of an inconsistent file system

— the index of the block containing the inode bitmap is
corrupted and two inodes reference the same block.

The first step in the inconsistency detection and repair
process is to use the layout declarations, the model decla-
rations, and the model definition rules to construct the ab-
stract model. For the corrupt file system shown in Figure 5
the tool would generate the sets and relations in Figure 6.

The abstract representation shown in Figure 6 violates
many of the constraints in Figure 4. For example, the empty
InodeBitmapBlock set violates the last constraint in Fig-
ure 4. Furthermore, the fact that the relation blockstatus

has the tuple 〈2, Used〉 and the set FreeBlocks contains the
block 2 violates the seventh constraint shown in Figure 4
— the block is not used for anything but is marked Used.
The fact that the contents relation contains two tuples that
reference block 6 violates the eighth constraint.

The inconsistency detection algorithm evaluates the inter-
nal constraints over the model. In our example, this eval-
uation uncovers the consistency violations described above.

Super Group Block
BitmapBlockBlock

Inode
Table

Inode
Bitmap

Corrupted
Value

Figure 5: Corrupted ext2 file system

For each such violation, it identifies the violated constraint
and the specific objects and relations that violate the con-
straint. For example, the tool discovers that (among other
violations), block 6 is referenced by multiple inodes, indicat-
ing a violation of the constraint that each block is in at most
one file or directory. When the tool discovers a violation, it
executes a sequence of actions to repair the violation. It first
converts the constraint into disjunctive normal form, i.e., a
disjunction (ors) of conjunctions (ands) of basic propositions
and negated basic propositions. The basic propositions cap-
ture basic numerical requirements on the values involved in
relations (for example, a certain value must be less than a
certain expression), constraints on the sizes of sets and rela-
tions, and objects or pairs that must be included in specific
sets or relations. Each basic proposition comes with an ac-
tion that is guaranteed to make the proposition true and an
action that is guaranteed to make the proposition false. De-
pending on the form of the proposition, these repair actions
may calculate a value that ensures that the constraint does
or does not hold, or insert or remove objects or pairs from
sets or relations.

To repair a violated constraint, the tool chooses one of
the conjunctions in the normal form, then repairs all of the
violated basic propositions in the conjunction. At this point
the constraint is no longer violated, and the tool proceeds
on to the next violated constraint.1

In our example, the tool discovers that the set
InodeBitmapBlock is empty, which violates the last con-
straint in Figure 4. In this case, there is only one con-
junction in the disjunctive normal form of the constraint;
the tool must therefore insert an object into this set to
satisfy the constraint. The repair action moves a block
from the FreeBlocks set to the InodeBitmapBlock set (be-
cause the object and relation declarations in Figure 2 spec-
ify that FreeBlocks and UsedBlocks partition the set of
blocks, InodeBitmapBlock is a UsedBlock, the repair action
must remove the new InodeBitmapBlock from the set of
UsedBlocks). The tool then moves on to repair the other
violations, producing the repaired model in Figure 7.

2.6 External Constraints
External constraints constrain the relation between the

abstract model and the concrete data structures. Figure 8
presents several of the external constraints for our exam-
ple. The first four constraints ensure that any newly created
structures in the model are written back out to disk. The
next two constraints translate the model repairs of the
InodeTableBlock back to the disk.

1The reader may be concerned that the repair process may
not terminate. We have implemented a specification analysis
algorithm that determines if the repair process will always
terminate for a given specification; the tool uses this algo-
rithm to reject any specifications that might generate repair
sequences that do not terminate.

For our example, these constraints translate the repairs
made in the abstract representation (shown in Figure 7)
to the concrete data structures on the disk. The repaired
version of the concrete data structure shown in Figure 5 is
shown in Figure 9. Notice that our tool has regenerated the
inode bitmap. Furthermore, the illegal block sharing has
been removed, and the block bitmap is consistent with the
use of blocks in the file system.

[for u in InodeTableBlock], true =>
disk.groupblock.InodeTableBlock=u

[for u in InodeBitmapBlock], true =>
disk.groupblock.InodeBitmapBlock=u

[for u in RootDirectoryInode], true =>
disk.superblock.RootDirectoryInode=u

[for i in UsedInode, for itb in InodeTableBlock,
for j=0 to 11], j<sizeof(i.contents) => cast(
InodeTable, disk.b[itb]).itable[i].Blockptr[j]=
element j of i.contents

[for i in UsedInode, for itb in InodeTableBlock,
for j=0 to 11], !j<sizeof(i.contents) =>
cast(InodeTable,disk.b[itb]).itable[i].Blockptr[j]=0

Figure 8: External Consistency Constraints

2.7 Experience
We developed a fault insertion strategy designed to sim-

ulate the effect of potential inconsistencies.2 Our fault in-
sertion mechanism simulates the effect of a system crash: it
shuts down the file system (potentially in the middle of an
operation that requires several disk writes), then discards
the cached state. Our workload opens and writes several
files, closes the files, then reopens the files to verify that the
data was written correctly. We crash the system part of the
way through writing the files, then rerun the workload. The
second run overwrites the partially written files and checks
that the final versions are correct.

In all of our tested cases, the algorithm is able to repair the
file system and the workload correctly runs to completion.
Without repair, files end up sharing inodes and disk blocks
and the file contents are incorrect. For a file system with
1024 8KB blocks, our repair tool takes 1.5 seconds on an
IBM ThinkPad X23 with a 866 Mhz Pentium III processor
and 384 MB of RAM running RedHat Linux 7.2 to construct
the file system model, check the consistency of the model,
and repair the file system.

2Fault insertion was originally developed in the context of
software testing to help evaluate the coverage of testing pro-
cesses [17]. It has also been used by other researchers for the
purposes of evaluating standard failure recovery techniques
such as duplication, checkpointing, and fast reboot [2]. The
rationale behind fault insertion is that faults, while serious
when they do occur, occur infrequently enough to seriously
complicate the experimental investigation of failure recovery
techniques. Fault insertion makes it practical to evaluate
proposed recovery techniques on a range of faults.

Super Group Block
BitmapBlockBlock Table

InodeInode
Bitmap

Figure 9: Repaired ext2 file system

3. CTAS CASE STUDY
The Center-TRACON Automation System (CTAS) is a

set of air-traffic control tools developed at the NASA Ames
research center [1, 16]. The system is designed to help air
traffic controllers visualize and manage the complex air traf-
fic flows at centers surrounding large metropolitan airports.
The goal is to automate much of the aircraft traffic man-
agement, reducing traffic delays and increasing safety. The
current source code consists of over 1 million lines of C and
C++ code. Versions of this source code are deployed at
centers surrounding major metropolitan airports.

Our fault insertion methodology attempts to mimic errors
in the flight plan processing routine that produce illegal val-
ues in the flight plan data structures. When the program
uses these illegal values to access the array of airport data,
the array access is out of bounds, which typically leads to
the program failing due to an addressing error. Our speci-
fication captures the constraint that the flight plan indices
must be within the bounds of the airport data array. The
specification itself consists of 100 lines, of which 83 lines
contain structure definitions. The primary difficulty in de-
veloping this specification was understanding the flight plan
data structures.

We used a recorded midday radar feed from the Dallas-
Ft. Worth center as a workload. We identified consistency
points within the application, then configured the system to
catch addressing exceptions, perform the consistency checks
and repair in the fault handler, then restart from the last
consistency point. Each consistency check and repair takes
approximately 3 milliseconds, which is an acceptable repair
time in that it imposes no performance degradation that
is visible in the graphical user interface that displays the
aircraft information.

Without repair, CTAS fails because of an addressing ex-
ception. With repair, it continues to execute in a largely
acceptable state. Specifically, the effect of the repair is to
potentially change the origin or destination airport of the
aircraft with the faulty flight plan processing. Even with
this change, continued operation is clearly a better alterna-
tive than failing. First, one of the primary purposes of the
system (visualizing aircraft flow) is unaffected by the repair,
and continued execution enables the system to provide this
functionality to the controller even in the presence of flight
plan processing errors. Second, only the origin or destina-
tion airport of the plane whose flight plan triggered the error
is affected. All other aircraft (during the recorded feed, the
system is processing flight plans for several hundred aircraft)
are processed with no errors at all, enabling the system to
deliver useful trajectory prediction and scheduling function-
ality for those aircraft. And finally, once the aircraft in
question leaves the center, its data structures are deallo-
cated from the system, which is then back to a completely
correct state.

The standard alternative to repair is to fail and reboot.
This solution is problematic for this application because re-
booting the system can take several minutes as the system

acquires enough flight plans and radar data history to make
reasonable trajectory predictions. And for the particular
error we explored in our experiments, rebooting is futile.
When the system reacquires and attempts to process the
flight plan that caused the preceding failure, it will simply
fail again.

CTAS illustrates that data structure repair can enable
systems to recover from otherwise fatal data structure cor-
ruption errors and enable the program to continue to execute
successfully. This property may be especially important for
safety-critical applications in which potentially degraded ex-
ecution is far preferable to no execution at all.

The CTAS system in particular illustrates some of the
reasons why continued execution can be the best choice for
some applications. The absence of repair makes the entire
computation vulnerable to errors, even if the error would
have no effect on the data and functionality of much of the
system. Repair enables the program to continue to execute
and generate useful results from the correct parts of the
data and the unaffected parts of the computation. Note also
that repair followed by continued execution may eventually
flush any anomalies out of the system to restore the data
structures to a completely correct state.

4. DEVELOPER CONTROL OF REPAIRS
The repair algorithm often has multiple options to satisfy

a given constraint; these options may translate into different
repaired data structures. We recognize that some repair
actions may produce more desirable data structures than
other repair actions, and that the developer may wish to
influence the repair process. We have therefore provided
the developer with several mechanisms that he or she can
use to control how the repair algorithm chooses to repair an
inconsistent data structure. Specifically, the developer may
specify the costs of given repair actions, provide a procedure
which decides which repair action to perform for a given
constraint violation, or supply a hand-coded repair routine
for a given constraint.

5. RELATED WORK
Software reliability has been an important area for many

years. Most research has focused on preventing or elimi-
nating software errors, with the approaches ranging from
enhanced software testing and validation to full program
verification. Software error detection has become an espe-
cially active area in recent years [6, 10, 5]. In contrast, our
research goal is to enable software to survive errors by re-
pairing damaged data structures.

5.1 Manual Detection and Repair Systems
Researchers have manually developed several systems that

find and repair data structure inconsistencies. File systems
have many characteristics that motivate the development of
such programs (they are persistent, store important data,
and acquire disabling inconsistencies in practice). Develop-

ers have responded with utilities such as Unix fsck and the
Norton Utilities that attempt to fix inconsistent file systems.

The Lucent 5ESS telephone switch and IBM MVS oper-
ating systems are two examples of critical systems that use
inconsistency detection and repair to recover from software
failures [11, 13]. The software in both of these systems con-
tains a set of manually coded procedures that periodically
inspect their data structures to find and repair inconsisten-
cies. The reported results indicate an order of magnitude
increase in the reliability of the system [8]. Researchers
have also developed a domain-specific language for speci-
fying these procedures for the 5ESS system [9]. The goal is
to enhance the reliability and reduce the development time
of the inconsistency detection and repair software.

5.2 Recovery Oriented Computing
Researchers in the area of recovery oriented computing

have developed a variety of techniques to help software re-
cover from runtime errors [14]. One of these techniques,
recursive restartability, composes large systems out of many
smaller modules that are individually rebootable [4]. The
goal is to build systems in which faults can be isolated at
the module level by rebooting.

In some cases, the consequences of an error may not be
immediately apparent and the system may run ahead, gen-
erating an unacceptable execution. In such cases, the ability
to undo an application’s operations to return to an earlier
state, repair the error in the earlier state, and then replay the
application’s operations would be useful. Operation Undo
provides an application-neutral framework for building sys-
tems that support undo [3].

5.3 Specification Languages
The basic concepts in our internal constraint language are

similar to those in constraint languages for object model-
ing formalisms such as UML [15] and Alloy [12]. Object
models have traditionally been used to help developers ex-
plore conceptual design properties in the absence of any
specific implementation. Our approach, in contrast, estab-
lishes a precise connection between the low-level, highly en-
coded data structures that appear in many programs and
the high-level conceptual properties captured in our internal
constraint language. This kind of connection may become
especially important for future design conformance systems,
which check that a program conforms to its design.

6. CONCLUSION
Data structure inconsistencies are an important source of

software errors. Our implemented system attacks this prob-
lem by accepting a data structure consistency specification,
then automatically detecting and repairing data structures
that violate this specification. Our experience indicates that
our system is able to deliver repaired data structures that
enable the corresponding programs to continue to execute
successfully within their designed operating envelope. With-
out repair, the programs usually fail.

As the field of computer science continues to mature, there
is an increasing need to deliver systems that can contin-
uously operate for very long, even unbounded, periods of
time. Repair is a central aspect of almost all long-lived sys-
tems in other fields, and we believe that the development
of effective repair technology is a necessary prerequisite for
the construction of robust, long-lived computer systems. We

therefore see our research as taking an important step to-
ward the effective construction of robust, self-healing sys-
tems that can successfully recover from the damage that
they will inevitably experience during their long lifetimes.

7. REFERENCES
[1] Center-tracon automation system.

http://www.ctas.arc.nasa.gov/ .
[2] P. Broadwell, N. Sastry, and J. Traupman. FIG: A

prototype tool for online verification of recovery
mechanisms. In Workshop on Self-Healing, Adaptive
and self-MANaged Systems, June 2002.

[3] A. Brown and D. A. Patterson. Undo for operators:
Building an undoable e-mail store. In Proceedings of
the 2003 USENIX Annual Technical Conference, June
2003.

[4] G. Candea and A. Fox. Recursive restartability:
Turning the reboot sledgehammer into a scalpel. In
Proceedings of the 8th Workshop on Hot Topics in
Operating Systems (HotOS-VIII), pages 110–115,
Schloss Elmau, Germany, May 2001.

[5] J.-D. Choi and et al. Efficient and precise datarace
detection for multithreaded object-oriented programs.
In Proceedings of the SIGPLAN ’02 Conference on
Program Language Design and Implementation, 2002.

[6] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera :
Extracting finite-state models from java source code.
In Proceedings of the 22nd International Conference
on Software Engineering, 2000.

[7] B. Demsky and M. Rinard. Automatic detection and
repair of errors in data structures. Technical Report
MIT-LCS-TR-875, MIT, Massachusetts Institute of
Technology, Dec. 2002.

[8] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[9] N. Gupta, L. Jagadeesan, E. Koutsofios, and D. Weiss.
Auditdraw: Generating audits the FAST way. In
Proceedings of the 3rd IEEE International Symposium
on Requirements Engineering, 1997.

[10] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static
analyses. In Proceedings of the SIGPLAN ’02
Conference on Program Language Design and
Implementation, 2002.

[11] G. Haugk, F. Lax, R. Royer, and J. Williams. The
5ESS(TM) switching system: Maintenance
capabilities. AT&T Technical Journal, 64(6 part
2):1385–1416, July-August 1985.

[12] D. Jackson. Alloy: A lightweight object modelling
notation. Technical Report 797, Laboratory for
Computer Science, Massachusetts Institute of
Technology, 2000.

[13] S. Mourad and D. Andrews. On the reliability of the
IBM MVS/XA operating system. IEEE Transactions
on Software Engineering, September 1987.

[14] D. A. Patterson and et al. Recovery-oriented
computing (ROC): Motivation, definition, techniques ,
and case studies. Technical Report
UCB//CSD-02-1175, UC Berkeley Computer Science,
March 15, 2002.

[15] Rational Inc. The unified modeling language.
http://www.rational.com/uml.

[16] B. D. Sanford, K. Harwood, S. Nowlin, H. Bergeron,
H. Heinrichs, G. Wells, and M. Hart. Center/tracon
automation system: Development and evaluation in
the field. In 38th Annual Air Traffic Control
Association Conference Proceedings, October 1993.

[17] J. M. Voas and G. McGraw. Software Fault Injection.
Wiley, 1998.

