
Understanding and Automatically Detecting Conflicting
Interactions between Smart Home IoT Applications

Rahmadi Trimananda
University of California, Irvine

USA
rtrimana@uci.edu

Seyed Amir Hossein Aqajari
University of California, Irvine

USA
amiraj.95@uci.edu

Jason Chuang
University of California, Irvine

USA
chuangj6@uci.edu@uci.edu

Brian Demsky
University of California, Irvine

USA
bdemsky@uci.edu

Guoqing Harry Xu
UCLA
USA

harryxu@cs.ucla.edu

Shan Lu
University of Chicago

USA
shanlu@uchicago.edu

ABSTRACT

Smart home devices provide the convenience of remotely control-

ling and automating home appliances. The most advanced smart

home environments allow developers to write apps to make smart

home devices work together to accomplish tasks, e.g., home security

and energy conservation. A smart home app typically implements

narrow functionality and thus to fully implement desired function-

ality homeowners may need to install multiple apps. These different

apps can conflict with each other and these conflicts can result in

undesired actions such as locking the door during a fire.

In this paper, we study conflicts between apps on Samsung Smart-

Things, the most popular platform for developing and deploying

smart home IoT devices. By collecting and studying 198 official

and 69 third-party apps, we found significant app conflicts in 3

categories: (1) close to 60% of app pairs that access the same de-

vice, (2) more than 90% of app pairs with physical interactions, and

(3) around 11% of app pairs that access the same global variable.

Our results suggest that the problem of conflicts between smart

home apps is serious and can create potential safety risks. We then

developed a conflict detection tool that uses model checking to

automatically detect up to 96% of the conflicts.

CCS CONCEPTS

· General and reference→ Empirical studies; · Software and

its engineering→ Empirical software validation.

KEYWORDS

smart home apps, concurrency, program analysis, model checking

ACM Reference Format:

Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian

Demsky, Guoqing Harry Xu, and Shan Lu. 2020. Understanding and Au-

tomatically Detecting Conflicting Interactions between Smart Home IoT

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409682

Applications. In Proceedings of the 28th ACM Joint European Software En-

gineering Conference and Symposium on the Foundations of Software Engi-

neering (ESEC/FSE ’20), November 8ś13, 2020, Virtual Event, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3368089.3409682

1 INTRODUCTION
Smart home devices are widely available commercially. Modern

smart home platforms support developers writing apps that im-

plement useful functionality on smart devices. Significant efforts

have been made to create integration platforms such as Android

Things from Google [43], SmartThings from Samsung [69], and the

open-source openHAB platform [62]. All of these platforms allow

users to create smart home apps that integrate multiple devices

and perform more complex routines, such as implementing a home

security system.

In this work, we focus on Samsung’s SmartThings platform

because it is the de-facto smart home development environment

and has the most extensive collection of smart home apps, including

those officially created by SmartThings [68] and those developed

by third-party companies and hobbyists. Homeowners that use

SmartThings can install any of these SmartApps and run them

simultaneously in their home deployment. Many of these apps each

implement a specific functionality, e.g., turn off lights in the absence

of motion. Thus, homeowners will likely need to install multiple

apps that collectively achieve the desired functionality.

1.1 The Problem
Interactions and Conflicts of Apps. The presence of multiple

apps that can control the same device creates interactions that can

potentially be undesirable (i.e., conflicts). For example a homeowner

may install the FireCO2Alarm [64] app which, upon the detection

of smoke, sounds alarms and door-unlocks1. The same homeowner

may also install the Lock-It-When-I-Leave [14] app to door-lock

automatically when the homeowner leaves the house.

While it may appear that these apps can be safely installed to-

gether, closer examination reveals that they can interact in surpris-

ing ways. Consider the following scenario. If smoke is detected,

FireCO2Alarm will door-unlock the door. If someone leaves home

with the presence tag, this will make the presence sensor change

1We use door-lock and door-unlock to refer to actions on a physical door, and lock and
unlock to refer to synchronizations in concurrent programming.

172

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409682
https://doi.org/10.1145/3368089.3409682

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

its state from "present" to "not present", causing the Lock-It-

When-I-Leave app to door-lock the door. This defeats the intended

purpose of the FireCO2Alarm app. Thus, the two apps conflict.

Data Races, Atomicity Violations. Interactions of smart home

apps may initially appear similar to those of concurrent programs,

including data races [37, 38, 54] and atomicity violations [41, 56, 82].

Data races can be resolved by acquiring locks appropriately, while

atomicity violations can be resolved by ensuring that locks are held

long enough to guarantee that a thread can finish all operations in

a batch without interference from other threads.

Unfortunately, these techniques cannot resolve the above-

mentioned conflict. Suppose that we use a lock to guarantee the

atomicity of the critical region of the codeÐthe FireCO2Alarm app

needs to acquire the lock before triggering the alarm and holds

the lock while the alarm is sounding. Similar actions need to be

taken to door-lock and door-unlock for the Lock-It-When-I-Leave

app. However, this approach could disable the desirable function-

ality of the apps. To illustrate, consider a scenario in which the

Lock-It-When-I-Leave app detects that someone leaves the house.

It then acquires the lock before it enters the critical region in which

door-lock is performed. It holds the lock to keep the door locked

until the person returns. In this period, if the FireCO2Alarm app

detects smoke/fire and attempts to door-unlock, it will fail because

the Lock-It-When-I-Leave app holds the lock. We end up in the

same situation: the door is locked during a fire!

Feature Interaction. Feature interaction considers the problem

in which different software features can have negative interac-

tions [26ś28, 33, 48, 63]. Our setting differs from most of the pre-

vious work in this area in that smart home apps are developed

independently and composed by end users. For example, Smart-

Things apps are distributed through many different channels (in-

cluding pay for source). Thus, there does not exist a means to detec-

t/resolve/avoid conflicts during development. Feature interactions

have also been studied in research prototypes for home automa-

tion [50, 65, 78]. These early systems were prototype systems, and

presumed much coarser apps (e.g., a single app for lighting) than

current smart home apps implement. HCI researchers have shown

that feature interactions in IoT systems make it difficult for users to

understand the systems’ behavior [81]. In rule-based smart home

systems, researchers have developed tools for repairing incorrect

rules [59].

Interactions of Mobile Apps. Researchers have also studied inter-

actions between Android apps [29, 32, 34, 44, 49, 51, 74]. However,

these techniques focus primarily on cross-app information flow/-

taint analysis via ICC/IAC mechanisms in Android (e.g., Intents)

and thus cannot be used in our setting. In particular, our prob-

lem requires checking properties of the execution trace that such

analyses cannot handle (see Section 3.1).

The Smart Home App Interaction Problem. The problem we

focus on in this work is conflict of expectations. The expected result

of the Lock-It-When-I-Leave app is that the door should be locked

when the homeowner leaves, while the expected result for the

FireCO2Alarm app is that the door should be unlocked during a fire.

These expectations conflict in certain scenarios. Hence, the funda-

mental question here is what should be the expected state of the door

when these apps interact: locked or unlocked? The potential conflict

between the FireCO2Alarm and Lock-It-When-I-Leave apps is not

correctable using standard mechanisms for concurrent accesses to

program variables or entitiesÐusing locks to restore atomicity still

violates the integrity of the expected result.

State-of-the-art and Our Work. The research community has

been actively looking into smart home apps. There is a body of work

that aims to find bugs and issues that could lead to serious security

problems [25, 30, 35, 36, 39, 40, 70, 83]. However, none of these

techniques focuses on interactions and conflicts between multiple

apps. In the cyber-physical systems community, work has been

done to identify and resolve conflicts between smart home apps

at the system level, viewing apps as black boxes [58, 75, 76, 79, 80].

While such techniques are useful in certain simple scenarios, they

are still semantics-agnostic and do not work even for the above-

mentioned conflictÐhow can we automatically resolve the conflict

without understanding the semantics of the apps, and their priority

and timing requirements?

IA-Graph [52, 53] studies smart-home app conflicts and proposes

a lightweight approach to check for conflicts. This work extracts an

SMT formula that describes the legal transitions for an app and then

uses an SMT solver to detect whether a set of apps has conflicting

transitions. As acknowledged in the IA-Graph paper, IA-Graph "ig-

nores complicated computations in the app code"Ðthey are, in fact,

used either (1) in condition statements, or (2) to update the device

stateÐand hence the patterns it finds are limited. In addition, not all

transitions in an app can be expressed in SMT, further limiting the

kinds of conflicts IA-Graph can detect. Another important draw-

back is IA-Graph does not check whether a conflicting transition

is reachable in an execution and hence can produce many false

positives. Unfortunately, without access to their implementation,

we could not conduct an empirical evaluation of these issues.

On the contrary, our study covers a broader range of interaction

patterns discovered in a wide-scale study. Our conflict detection

tool, IoTCheck, works for arbitrarily complicated application logic

since it model-checks all app pairs directly using the app code.

1.2 Our Contributions
The goal of this paper is to understand the nature of the interactions

between smart home apps. We have identified the following five

research questions to guide our study.

RQ1: What kinds of interactions are there? We have collected

and studied 198 official SmartThings apps and 69 third-party apps.

Compared with recent studies of smart home apps [35, 36, 70, 83],

we have among the largest app suite. To understand interactions

and possible conflicts, we analyzed these apps in pairs (see Sec-

tion 3) and examined all pairs of apps that can potentially interact.

We discovered three main categories of interactions: (1) interactions

between apps that access the same device (see Section 4), (2) inter-

actions between apps such that the output from one app interferes

with the input of the other app (e.g., via sensors, see Section 5),

and (3) interactions between apps accessing global variables, e.g.,

whether the home is in the Home or Away mode (see Section 6).

RQ2: What types of conflicts arise between smart home

apps? For an app pair, we first inspected their source code and

documentation to understand the intended behavior of each indi-

vidual app and then reason about possible interactions between

them. If there exists an interaction that can compromise the desired

functionality of either app, we say that this pair has a conflict, e.g.,

173

Understanding and Automatically Detecting Conflicting Interactions ... ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

ȫǟȬ

SmartThinıs Cloud

Smart Home
DeǃiĊes

Smart Huĉ

Smart
Thinıs

App

Third-partǊ
SǊstems

e.ı., IFTTT

RouterWi-Fi
DeǃiĊes

Ziıĉee/
Z-Waǃe
DeǃiĊes

 ...
DeǃiĊe

Handler
DeǃiĊe

Handler
DeǃiĊe

Handler

 ...

Eǉample oİ ǟ SmartApps
SmartApp #Ǟ
FireCO2Alarm

DeǃiĊe Handler
capability.lock
lock.lock()
lock.unlock()

SmartApp #ǟ
Lock-It-When-I

-Leave
Ziıĉee

door loĊk

ȫǞȬ

Gloĉal Variaĉles

SmartApp SmartApp SmartApp

 NetǄork/phǊsiĊal
 ĊonneĊtion
 CommuniĊation

Figure 1: SmartThings platform with an example of two

apps running in parallel.

the functionality of the FireCO2Alarm app to door-lock is compro-

mised by the Lock-It-When-I-Leave app. Our goal is to carefully

inspect apps that interact, and understand whether they conflict

and if they do, why.

RQ3: How prevalent are these conflicts? We summarized the

results of our study to understand how prevalent the conflicts are.

We found that almost 60% of pairs in the first category, more than

90% of pairs in the second category, and around 11% of pairs in the

third category have conflicts (see Sections 4.3, 5.2, and 6.3).

RQ4: Are there common coding patterns that are unsafe in

the presence of app interactions?During our study, we observed

several common programming idioms that often result in problem-

atic interactions between apps. Discovering and classifying these

idioms can help developers mitigate potential conflicts by avoiding

these idioms.

RQ5:How canwe automatically detect conflicts? Based on our

findings, we develop a tool that can automatically detect conflicts

(see Section 7). Our tool and dataset are available under an open

source license at http://plrg.ics.uci.edu/iotcheck/ [71ś73].

Implications. The implications of this work are two-fold. First,

our study opens a new research direction in the area of testing

and verification of concurrent programs where the development of

different apps are done completely independently. The inability of

existing concurrency control mechanisms to resolve smart home

apps dictates the need of new techniques (such as IoTCheck) to

detect and/or repair these conflicts. Second, for platform vendors

such as Google and Samsung, new APIs should be designed and

applied to these platforms so that app developers can be directed

to make more informed decisions during development even if they

are not aware of potential runtime conflicts.

2 BACKGROUND
This section provides an overview of SmartThings [69], the de-facto

smart home IoT development platform.

Components. Figure 1 shows an overview of the SmartThings

platform. There are three main components, as discussed shortly.

The network/physical connections between these components are

shown in Figure 1 as solid lines, while dashed lines represent com-

munication paths.

(1) Smart Home Devices: SmartThings supports both Smart-

Things-branded and third-party devices as well as a variety of

communication protocols, including Wi-Fi, Zigbee, and Z-Wave.

While Wi-Fi devices are connected directly to the home router,

Zigbee/Z-Wave devices are connected to a SmartThings smart hub

through dedicated radios. The smart hub is connected to the home

router and relays the communication between the Zigbee/Z-Wave

devices and the SmartThings cloud via the router. Classes of de-

vices that are supported by the SmartThings platform include both

actuators (e.g., switches, locks, thermostats, lights, or alarms) and

sensors (e.g., illuminance, motion, water, or sound sensors).

(2) SmartThings Cloud: The SmartThings cloud hosts smart

home apps (i.e., SmartApps) and device handlers (i.e., drivers that

directly control devices) developed using an event-based program-

ming model in Groovy [42], a managed language running on top

of the Java Virtual Machine (JVM). SmartApps implement de-

sired functionalities on smart home devices by accessing global

variables and device features through capabilities exposed by de-

vice handlers. For instance, a door lock can be accessed by Smar-

tApps through its device handler that declares lock-related capa-

bilities using capability.lock. These capabilities provide access

to features such as door-lock and door-unlock via APIs such as

lock() and unlock(). Third-party systems, e.g., IFTTT (If-This-

Then-That) [21], can also connect to the SmartThings cloud and

control smart home devices through SmartApps that expose HTTP

endpoints as a control interface.

(3) SmartThings Smartphone App: Homeowners can use the

SmartThings smartphone app to install devices and SmartApps. To

communicate with home devices, the smartphone first connects and

sends control information to the SmartThings cloud either over the

Internet or via the home router, illustrated by arrows (1) and (2) in

Figure 1, and then the SmartThings cloud forwards the information

to smart home devices via the home router and the smart hub.

Execution Model. SmartThings uses an event-driven execution

model and allows multiple SmartApps to run concurrently. Con-

sider for example the FireCO2Alarm app [64], which attempts to

door-unlock if it detects smoke/fire through a smoke sensor. The

app subscribes to the events generated by the sensor’s device han-

dler: when the sensor detects smoke/fire, it sends a message to the

smart home hub. The smart home hub relays the message to the

SmartThings cloud, which in turn runs the sensor’s device handler

to process the message. The device handler will generate an event

and send it to the app’s event handler method, which in turn calls

another method takeActions() to door-unlock. Since multiple

apps run concurrently, the two apps FireCO2Alarm and Lock-It-

When-I-Leave share the device handler for the door lock, and thus

can both execute lock() and unlock() at any time on the same

device handler. The device handler on the cloud translates each

action into device specific commands. The cloud then sends these

commands to the local smart hub, which forwards the commands

to the door lock.

3 METHODOLOGY
This section describes our research methodology. We first define

several terms. Next, we discuss our database of smart home apps

174

http://plrg.ics.uci.edu/iotcheck/

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

X ∈ Execution = (Action | Event | Update)∗

A ∈ Action = read(𝛼 , 𝑑 , 𝜏 , 𝑟) | write(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣) |

moderead(𝛼) | modewrite(𝛼 , 𝜇) |

schedule(𝛼 , 𝑡 ,𝑚)

V ∈ Event = devEv(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣) | modeEv(𝛼 , 𝜇) |

schedEv(𝛼 ,𝑚)

U ∈ Update = devUp(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣) | modeUp(𝛼 , 𝜇)

𝛼 ∈ App 𝑑 ∈ DeviceID 𝜏 ∈ DeviceType 𝑟 ∈ Feature

𝑣 ∈ Value 𝑡 ∈ Time 𝜇 ∈ Mode 𝑚 ∈ Method

Figure 2: SmartThings execution traces.

and the way we structure them for the study. Our study focuses on

pair-wise interactions. The rationale is that pair-wise interactions

are fundamental for understanding multi-app interactions since

multi-app interactions can be decomposed to pair-wise interactions

for reasoning about. Upon carefully examining these apps, we did

not observe any code patterns that would lead to new interactions

arising when three or more apps are involved.

3.1 Definitions
Execution Traces.Wefirst formalize our notion of execution traces

for SmartThings in Figure 2. The traces can be generated by one

or more apps that run concurrently. An execution X ∈ Execution

from a set of apps is a sequence of the following:

(1) Action: App 𝛼 performs an actionA ∈ Action by executing any

of the following set of operations:

• read(𝛼 , 𝑑 , 𝜏 , 𝑟) and write(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣), which read from and write

a value 𝑣 to a feature 𝑟 of a device with ID 𝑑 and device type 𝜏 ,

respectively;

• moderead(𝛼) and modewrite(𝛼 , 𝜇), which read from and write a

new mode 𝜇 to the location.mode variable, respectively; and

• schedule(𝛼 , 𝑡 ,𝑚), which schedules a method𝑚 to run at time 𝑡 .

(2) Event: An eventV ∈ Event is either:

• devEv(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣), a device event is delivered to app 𝛼 from

device 𝑑 to notify the app of device status update;

• modeEv(𝛼 , 𝜇), a mode event is delivered to app 𝛼 to notify it of a

mode change; or

• schedEv(𝛼 ,𝑚), a schedule event denotes when the framework

processes a schedule action and executes the method𝑚 in app 𝛼 .

(3) Update: An updateU ∈ Update is an external input to the smart

home. It is either:

• devUp(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣), an update with a new value 𝑣 generated from

a device with ID 𝑑 and type 𝜏 for feature 𝑟 and value 𝑣 , i.e., a

sensor reading a temperature change; or

• modeUp(𝛼 , 𝜇); an update with a newmode 𝜇, e.g., the homeowner

manually setting a new mode.

Interacts-with Relation. We next define a relation interacts-with

over the domain of Apps × Apps where Apps is the set of all smart

home apps. A pair of apps (𝛼1, 𝛼2) ∈ interacts-with (i.e., 𝛼1 interacts-

with 𝛼2) if they interact with each other in one of the three ways:

(1) Access the same device capability:Apps𝛼1 and𝛼2 can access

a shared device using the same capability; 𝛼1 updates the device

state (i.e., feature 𝑟 and value 𝑣) and 𝛼2 accesses (i.e., updates or

reads) the device state. We refer to this relationship as a device

interaction. For example, 𝛼1 may turn on a switch based on the

input of a light/illuminance sensor and 𝛼2 may turn off the same

switch based on a motion sensor, both calling methods on the same

device handler object.

(2) Physical interaction: We say that two apps have a physical-

medium interaction if the output of 𝛼1 physically becomes an input

for 𝛼2 and affects the execution of 𝛼2. For example, 𝛼1 activates

a robot vacuum cleaner at a certain time during the day, and the

robot’s movement becomes the input to a motion sensor that is

used by 𝛼2.

(3) Access the same global variable: Apps 𝛼1 and 𝛼2 can interact

via the same global variable, whose value is stored on the cloud,

e.g., 𝛼1 updates the variable and 𝛼2 accesses it. This is referred to

as a global-variable interaction. In this study, we focused on the

location.mode variable because it is the only global variable in the

SmartThings platform that allows for both write and read accesses.

location.mode has three preconfigured values: Home, Away, and

Night. An example scenario is that one app updates location.mode

based on the input of the presence sensor while the second app

reads it to determine whether a door should be locked/unlocked.

Conflict Relation. Apps 𝛼1 and 𝛼2 conflict if they interact (in one

of the ways discussed above) and the interaction may compromise

the correctness of the apps or produce an unintended outcome. Al-

though the notion of a conflict is somewhat vague, we found that

Definitions 3.1 and 3.2 worked well most of the time in practice.

Definition 3.1. Device/Global-Variable Conflict. Two apps 𝛼1
and 𝛼2 conflict iff there exists an execution X of 𝛼1 and 𝛼2 and two

actions A1 and A2 that update the same feature 𝑟 or mode 𝜇 in X

such that: (1) A1 and A2 are performed by different apps (𝛼1 and

𝛼2), (2) A1 and A2 write different values (𝑣1 and 𝑣2, or 𝜇1 and 𝜇2),

(3) there is no such A3 that updates the same 𝑟 or 𝜇 and that the

update is ordered between A1 and A2, and (4) A2 was not initiated

by a direct user action.

Definition 3.2. Physical-MediumConflict. Two apps 𝛼1 and 𝛼2
conflict iff one app performs an action that affects a physical medium

(e.g., motion) and the other app reads from a sensor that can sense

that physical medium (e.g., a motion sensor).

3.2 Smart Home App Pairs
Choice of Apps.We studied 198 official and 69 third-party smart

home apps that we have collected from the SmartThings official

Github [68] and other third-party repositories. While the statistics

of app usages and installations are proprietary, all the apps that we

used in this study can be obtained easily from the aforementioned

repositories. Today, the SmartThings official Github [68] has an ac-

tive user communityÐit has been forked into personal repositories

more than 70,000 times. Any user can get and upload any app’s

source code to the SmartThings Marketplace via the SmartThings

Groovy IDE [24]. Thus, users can install and use any app.

App Pairing. These apps were initially developed to perform their

specific functionality. There are no standardized guidelines either

from SmartThings or from the community as to how to develop an

app in a way so that it can safely interact with other apps.

Our process for manual examination was to independently exam-

ine the source code of each app pair by at least two of the authors.

175

Understanding and Automatically Detecting Conflicting Interactions ... ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Groups of apps for device-type pairing.

Group Capability Subgroup App
Apps # Pairs

Switches switch General 24 276
Lights 32 496
AC/fan/heat 3 3
Vent 3 3
Camera 2 1

Locks lock 21 210
Thermostats thermostat 19 171
Lights colorControl Hue 13 78

Non-Hue 11 55
Dimmers switchLevel 11 55
Alarms alarm 10 45
Valves valve 7 21
Music Players musicPlayer 5 10
Relay relaySwitch 5 10
Speech speechSynthesis 3 3
Synthesizers
Cameras imageCapture 2 1

Total 171 1,438

In the event that the two examiners disagreed about whether an

app pair conflicted, they discussed their disagreement on the app-

pair’s classification and reached a consensus. There are 35,511 app

pairs given the 267 apps we collected above. From this huge set of

pairs, we identify 2,844 pairs of apps that potentially interact with

each other. We next explain how we use the three interact-with

conditions to identify these 2,844 pairs. We will then study how

many of these 2,844 pairs contain conflicts in Sections 4ś6.

Device-Type Pairing. To identify apps that have device interac-

tions, we first divide the 267 apps into groups based on what type

of device an app aims to manage, as shown in Table 1. Clearly, if

two apps do not access a common device, it is impossible for them

to have device interaction.

Out of the 267 apps, we excluded 132 apps for three reasons. First,

we excluded apps that take inputs from outside of the SmartThings

platform. For instance, the IFTTT (If-This-Then-That) [21] app

functions as a bridge between the SmartThings platform and IFTTT,

a third-party platform. These apps typically wait for a third-party

application built on a third-party platform (e.g., IFTTT and other

similar platforms) to send commands and generate events through

HTTP endpoints. We do not have access to the source code of such

third-party applications; thus, it is not possible to accurately reason

about potential interactions. Second, we excluded apps that only

send messages to a smartphone about the state of sensors because

these apps do not interact with other apps. Third, we also excluded

apps that use third-party specific device handlers since these apps

cannot share a device with other apps. Therefore, we included 135

apps for device interaction. Some of them access multiple devices

and, thus, are included in multiple groups of devicesÐhence, a total

of 171 apps. At the end, we identified a total of 1,438 pairs from the

171 apps classified in various device-type-based groups.

For some groups, we identify all pairs of apps from the group as

device-interaction pairs. For example, the Locks group contains 21

apps, we inspected all the
(21
2

)

= 210 pairs and confirmed them all

to be device-interaction pairs.

For some groups that provide generic functionality, such as

Switches and Lights, we further create sub-groups and only identify

apps that belong to the same sub-group as having a device inter-

action. For example, for the Switches group, out of a total of 64

Table 2: Groups of apps for physical-medium pairing.

Output # Apps Sensor # Apps # Pairs

Lights 42 Illum. 5 205
Moving Dev. 2 Motion 39 78
Water Valves 2 Water 11 21
Sound Dev. 21 Sound 1 21

Total 325

apps, 24 access general switches (276 pairs), 32 access light switches

(496 pairs), 3 access AC/fan/heater (3 pairs), 3 access the ventila-

tion system (3 pairs), and 2 access cameras (1 pair). We also found

8 apps (not included in Table 1) that control specific devices (e.g.,

curling-iron) that are not shared by other apps; hence, no pairs were

constructed for these apps. The Lights group consists of apps that

use the light device handler (i.e., capability.colorControl) to

turn the lights on or off, set their illuminance level [18], or change

their colors. Each group was divided into a subgroup of apps that

controls Philips Hue lights and another subgroup that controls non-

Hue lights. In the Lights group, there are 13 apps for Hue leading

to 78 pairs and 11 apps for non-Hue leading to 55 pairs.

Physical-Medium Pairing. Two apps can interact via a physical

medium; e.g., one app generates an output that could be a physical

input to the other app. To illustrate, consider an app that changes

the state (i.e., toggle on/off) of light bulbs. These changes also affect

the illuminance produced by the light bulbs, which can become an

input to apps that read from illuminance sensors.

Table 2 reports results for apps that interact physically. We

grouped them based on the output-input relationships, such as

lights (output) and illuminance sensors (input), moving devices

(output) and motion sensors (input), water valves (output) and wa-

ter sensors (input), or sound-generating devices (output) and sound

sensors (input). For the light-illuminance-sensor relationship, for

example, we constructed a total of 205 pairs for the 42 apps that

control lights and the 5 apps that read from illuminance sensors.

Global-Variable Pairing. Apps can also interact if they access the

same global variable. Currently, there is only one global variable

in the SmartThings platform that multiple apps can read from and

write into: location.mode. We grouped together all the 47 apps

that access it for a total of 1,081 pairs.

3.3 Threats to Validity
External Validity. This study focused on Samsung’s SmartThings

platform and thus may miss interaction patterns specific to other

platforms. However, we believe that most of the findings and in-

sights revealed in this study are universal for smart home appli-

cations and frameworks. For instance, our results also apply to

rule-based systems, e.g., IFTTTÐtwo rules: (1) łif the humidity

is high, turn off the ACž and (2) łif the temperature is low, turn

on the ACž, have a conflict by our definition if the humidity is

high and the temperature is low. Even for interactions that are

specific to the SmartThings platform (e.g., concurrent accesses to

the location.mode variable), the patterns discovered under such

interactions are general. For example, other platforms would also

have global variables that serve similar purposes and hence our

results can be generalized to these other platforms as well.

Internal Validity. This study covers all of the 198 official apps that

we could find in the SmartThings official Github repository and the

176

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

example set for SmartThings tutorials as of July 2018. We added 69

third-party apps that we gathered from various other sources.

While we studied the complete set of the official apps, the third-

party apps used in the study may not be exhaustive. Nevertheless,

our experience shows that the patterns that exist in the official apps

are similar to those in the third-party apps. We believe adding new

third-party apps would not change the main findings and insights.

In this study, we limited the scope of app interactions to pairs, and

hence, there could be new types of interactions that manifest only

when three or more apps are involved. However, we have already

manually inspected a large number of triplets and not found any

new interaction patterns that do not exhibit in pairs.

We manually inspected app pairs to determine whether the two

apps in each pair can conflict. The manual determination is sub-

jective in some casesÐit reflects the authors’ beliefs of whether

the interactions between a pair of apps represent an unintended

outcome. Whether this conflict represents a problem in the real

world is a very complicated question and can depend on (1) the

intended use of the homeowner and (2) the home environment. For

example, if one app turns a light on and a second app based on the

absence of motion from a sensor turns the light off, we classify this

as a conflict. However, users may compose apps with the intention

of this app interaction. As another example, certain interactions

are made over physical mediums; for instance, the sound generated

by a speaker app could become the input of a sound sensor used

by a different app. In this case, whether the sensor can pick up

the sound depends on whether it is physically close to the speaker

generating the sound. In the study, we assume that this interaction

can actually happen although the speaker and the sensor may be

far away in a real-life deployment.

Conflicts that have safety or security aspects are certainly critical

and could be harmful. However, it is somewhat difficult to determine

the potential safety hazards or implications of a conflict as they can

depend on the specific deployment. For example, if a conflict causes

a smart outlet to remain on, whether it is a safety hazard depends on

what is plugged into the smart outlet, e.g., toaster versus LED light.

Nevertheless, even benign conflicts can render apps uselessÐthey

make a smart home system unpredictable and unreliable, ultimately

making the system less useful.

Our ultimate goal is to identify all avoidable conflicts and their

possible sources so that actions can be taken in future development

and/or deployment to mitigate potential conflicts. Some conflicts

can be potentially handled by the development of API with support

for common app interaction patterns. On the contrary, if physical

proximity is a concern, we could develop an analysis that warns

the user during installation. This explains why we treated these

two scenarios differently.

4 DEVICE INTERACTION
This section presents our findings for apps that form pairs with

device interactions. When we first studied this category, we found

that some apps monitor status changes but do not initiate any

changes on devices.When such an app is paired with another device

monitor app, both apps concurrently read the device status and

neither of them makes any changes to the device status. We refer

to such a pair of apps as having a read-read relationship. 128 (8.9%)

pairs have this relationship and thus do not interact. We classified

Table 3: Statistics for device interaction.

Relationship # Pairs Percentage

Read-read 128 8.9%
Non-conflicting Interactions

Direct-direct 20 1.4%
Composable 319 22.2%
Different-feature 52 3.6%
Same-feature 90 6.3%

481 33.5%

Conflicting Interactions

Feature conflicts 632 43.9%
Invalid-local-state 76 5.3%
Dropped-update 121 8.4%

829 57.6%

Total 1,438

device interactions into non-conflicting and conflicting interactions;

the statistics of the classification are reported in Table 3.

4.1 RQ1: Types of Non-Conflicting Interactions
We observed three types of non-conflicting interactions. First, al-

though two apps can access the same device, their accesses can

only be triggered manually by users. Consequently, whether they

conflict with each other depends on how users operate them. For

example, Big-Turn-ON is such an app: it turns on switches when

the user touches the app’s user interface [8]. Two users may con-

currently initiate conflicting commands to a switch through two

apps like Big-Turn-ON. We consider this type of conflicts out of the

control of apps. We refer to this type of interaction as a direct-direct

relationship. We found that this relationship holds for 20 (1.4%) app

pairs in the device category (see Table 3).

Second, certain apps can work together to realize desired func-

tionality, and hence are intended to interact with each other. We

refer to this type of interaction as a composable relationship and cor-

responding apps as composable apps.We found that this composable

relationship holds for 319 (22.2%) pairs in the device category.

Note that many of these composable apps were developed inde-

pendently. For example, the FireCO2Alarm app sets off the alarm

and triggers door-unlocks when smoke/fire is detected [64], while

the Initial-State-Event-Streamer app [17] monitors and for-

wards events frommany devices including the alarm device handler

to a website [22] that allows users to remotely monitor device activ-

ities. These two apps were independently developed, but they could

interact to fulfill a desired functionality at run timeÐnotifying a

user through the specific website that an alarm is set off.

Third, some apps simultaneously access different features of the

same device or the same feature of the same device in a consistent

way, and hence do not conflict with each other.

An example of the former (i.e., accesses to different features)

is the Keep-Me-Cozy and Thermostats [12, 20] pair of apps from

the Thermostats group. One app calls methods on the thermostat

to set heating or cooling points (e.g., setHeatingSetpoint() and

setCoolingSetpoint()), while the other app sets the mode of

the thermostat (e.g., via setThermostatMode()). Although these

two apps control the same shared device, they operate on different

features of the device. Hence, although the first app interacts-with

the second app, there is no conflict between them. We refer to

this interaction as a different-feature relationship and found this

relationship holds for 52 (3.6%) pairs in the device category.

177

Understanding and Automatically Detecting Conflicting Interactions ... ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

An example of the latter (i.e., consistent accesses to the same fea-

ture) is the following pair of apps from the Locks group: the Lock-

It-at-a-Specific-Time and Auto-Lock-Door apps [5, 67]. Both

apps call lock.lock() to door-lock. We consider this interaction

non-conflicting, since these apps’ actions would lead the shared

device to the same state and hence the expected outcome is not com-

promised. We refer to this interaction as a same-feature relationship

and found it to hold for 90 (6.3%) pairs in the device category.

4.2 RQ2: Types of Conflicting Interactions
Of the 1,438 app pairs in the device category, 829 pairs exhibit

conflicting behaviors. We classified these conflicting behaviors as

either feature conflicts and saved-state conflicts.

Feature Conflicts. There are many pairs where the two apps at-

tempt to update the same device state with incompatible values.

An example is the FireCO2Alarm and Lock-It-When-I-Leave pair

discussed in Section 1. Recall that the FireCO2Alarm app attempts

to door-unlock during a fire while the Lock-It-When-I-Leave app

could potentially door-lock. We refer to these conflicts as feature

conflicts. A majority of the app pairs: 632 (43.9%) pairs in the device

category have feature conflicts.

Saved-State Conflicts.Many apps use their local variables to keep

track of device states and guide their own device updates. These

apps easily become broken when paired with other apps that can

update the same devicesÐa concurrent update from the other app

would make this app’s variable inconsistent with the device state.

Consider Auto-Humidity-Vent that turns on/off a fan based on

the humidity level [2]. This app conflicts with the Big-Turn-OFF app

that allows a user to manually turn off the fan [7] for the following

reason. When Auto-Humidity-Vent detects that the room humidity

is above a threshold, it turns on the fan and simultaneously updates

its local state variable state.fansOn to true. A user may then

use the Big-Turn-OFF app to turn off the fan, causing the room

humidity to increase above the threshold. Unfortunately, since the

local variable state.fansOn remains true in the Auto-Humidity-

Vent app, unaware of the fan being turned off by Big-Turn-OFF,

Auto-Humidity-Ventwould stop functioning, incorrectly assuming

that the fan is already on. We refer to this scenario as invalid-local-

state conflicts, and found that 76 (5.3%) pairs in the device category

exhibit this pattern.

A common pattern we observed is an app that stores and restores

the state of a device. For example, the Thermostat-Auto-Off app

restores the state of the thermostat to a previously stored state.

Consider an execution in which after the Thermostat-Auto-Off

app saves the current state (e.g., off) of the thermostat into a local

variable, a second app changes the actual device state to a different

value (e.g., "cool"), which does not propagate to Thermostat-Auto-

Off’s internal state. The next time Thermostat-Auto-Off tries to

restore the thermostat state, the restoration will be based on the

stale and wrong value saved in the local variable. Thus the update

performed by the second app is dropped. We refer to this scenario

as dropped-update conflicts, and found 121 (8.4%) pairs in the device

category exhibit this pattern.

4.3 RQ3: Prevalence of Conflicts
As reported in Table 3, 91.1% of the pairs in device category have

actual interactions (i.e., at least one device updates the device state),

Table 4: Statistics for physical-medium interaction.

Medium # Pairs Percentage

Non-Conflicting Interactions

Water 10 3.1%
Sound 21 6.4%

31 9.5%

Conflicting Interactions

Water 11 3.4%
Motion 78 24.0%
Light state 151 46.5%
Light color 20 6.2%
Light brightness 5 1.5%
Light combination 29 8.9%

294 90.5%

Total 325

while 8.9% of the pairs have read-read relationships and hence do

not actually interact. Of the pairs that have actual interactions, the

majority (57.6%) have conflicts.

4.4 RQ4: Unsafe Coding Patterns
We found there are at least two unsafe coding patterns for device

interactions: (1) blind-update and (2) saved-state. The blind-update

pattern occurs in apps that blindly update the same state of the

same device without checking the current state of the device. The

saved-state pattern occurs when an app that saves the state of a

device feature into a local variable and later uses the saved value.

This may cause updates from other apps to be discarded. In some

cases, a check of the current state before doing the update could

help the app verify that its local state is consistent with the device

state. However, with the existing APIs, there is no way to do the

check-and-update in an atomic wayÐan app could only retrieve

the device state by invoking a method𝑚1 and then update the state

by invoking another method 𝑚2; the state could be changed by

another app after𝑚1 returns but before𝑚2 is completed.

5 PHYSICAL-MEDIUM INTERACTION
This section presents our findings for apps that interact via the

physical world. In this category, two apps are paired when the

output from the first app can physically become the input of the

second app and affect its operation. Table 4 reports our findings.

5.1 RQ1&2: Types of (Non-)Conflicting
Interactions

Motion. The first set of physical interactions are due to motion.

An example pair is Neato-(Connect) and Forgiving-Security [1,

23]. Neato-(Connect) is a third-party app that controls a Neato

vacuum-cleaning robot. When the app activates the robot, the robot

starts cleaning the house. While it is moving around the house, its

movement could trigger a motion sensor used by the Forgiving-

Security app and thus set off a security alarmÐa false alarm. Of

the 325 app pairs in the physical-medium category, 78 pairs (24.0%)

interact via motion and all exhibit conflicts.

Light. A similar set of app pairs are based on interactions via light.

The Turn-On-at-Sunset and Light-Up-the-Night apps [13, 16] are

an example. Consider a deployment in which each app controls

a different light bulb. At sunset, the Turn-On-at-Sunset app may

turn on a light bulb whose light may affect the illuminance sensor

of the Light-Up-the-Night app. The Light-Up-the-Night app is

supposed to turn on a light bulb when its illuminance sensor detects

178

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

that the surrounding is dark. If the light bulb controlled by the Turn-

On-at-Sunset app is sufficiently close to the illuminance sensor

used by the Light-Up-the-Night app, the sensor may pick up some

light from the light bulb. This could cause the Light-Up-the-Night

app to determine that there is no need to turn on the light bulb, and

hence, the two apps conflict.

Some apps can control a light bulb by changing its on/off state,

colors, or brightness levels. Any of these changes can potentially

be detected by an illuminance sensor [18].

Table 4 summarizes our findings: 151 pairs (46.5%) have a conflict

through the change of light’s on/off state; 20 pairs (6.2%) conflict

through the change of light’s color; 5 pairs (1.5%) conflict through

the change of light’s brightness; and 29 pairs (8.9%) conflict through

a combination of the three.

Water. Physical interactions can also occur via water. An example

pair that interacts via water consists of the Sprayer-Controller-2

and Close-The-Valve apps [3, 6]. The former schedules irrigation

for a certain amount of time periodically, while the latter closes

a water valve when the water sensor detects moisture. When the

water coming from a water sprayer controlled by the Sprayer-

Controller-2 app reaches the water sensor used by the Close-

The-Valve app, the two apps interact. This interaction potentially

results in a conflict because a bad moisture sensor placement could

cause the Close-The-Valve app to prevent the irrigation that has

been scheduled by the Sprayer-Controller-2 app.

Our results show that 21 pairs interact through water: 11 of them

have conflict and 10 do not. In each of these 10 pairs, the app that

controls the water valve actually closes it when it detects moisture.

Therefore, no water can be produced and detected by the water

sensor of the other app.

Sound. Apps can also interact via sound. For example, an interest-

ing app pair is Bose-SoundTouch-Control and InfluxDB-Logger,

which reads from a sound sensor [19]. In fact, the latter can be

paired with any other sound-producing apps, such as those that

control speakers, alarms, or music players.

Our findings show that there are 21 pairs (6.4%) that interact via

sound but we could not find any conflicts among them. Typically, a

pair consists of a sound-producing app and the InfluxDB-Logger

app. Since the InfluxDB-Logger app only logs the status of the

sound sensor, the two apps are actually composableÐsimilar to the

composable relationship in the device interaction (see Section 4.1).

Physical Factors. The physical-medium interaction depends on

certain physical factors. The position of the first app’s actuator rela-

tive to the second app’s sensor determines whether the output from

the actuator could reach the sensor. If their proximity is sufficiently

close for the actuator’s output to affect the sensor, the two apps

interact; otherwise, they do not. When we performed this study,

we assumed that their locations are sufficiently close. Although it

is a conservative approximation, this is the best we could do and

our findings can help developers and users to avoid such conflicts.

5.2 RQ3&4: Prevalence of Conflicts/Unsafe
Coding

Table 4 summarizes the statistics for the physical-medium interac-

tion pairs. Our findings suggest that typically, when a pair of apps

interact through a physical medium, they will most likely conflict.

In most cases, the second app does not expect to receive any input

Table 5: Statistics for global-variable interaction.

Relationship # Pairs Percentage

Read-read 405 37.5%
Non-Conflicting Interactions

Direct-direct write-write 28 2.6%
App write-read 302 27.9%
Direct write-read 221 20.4%
App-app write-write 1 0.1%

552 51.0%

Conflicting Interactions

App-app write-write 44 4.1%
App-direct write-write 80 7.4%

124 11.5%

Total 1,081

from the first app. It normally expects sensor inputs from its sur-

roundings. Out of the 325 pairs with physical-medium interaction,

90.5% (294 pairs) of them have a conflict. We did not observe any

coding patterns that cause conflicts in this category. Hence, we con-

cluded that the conflict in pairs with physical-medium interaction

is caused mainly by the physical proximity between the actuators

and sensors of the conflicting apps.

6 GLOBAL-VARIABLE INTERACTION
This section presents our findings for app pairs that have global-

variable interactions. As discussed in Section 3.1, since SmartThings

only has one global variable location.mode that allows both reads

and writes, we consider two apps to have global-variable interac-

tion if they both access location.mode. Our statistics are reported

in Table 5. 405 (37.5%) of the pairs (reported as pairs with read-

read relationships in Table 5) contain apps that only read from

location.mode. These apps do not actually interact.

6.1 RQ1: Types of Non-Conflicting Interactions
The first type contains apps that only write location.mode and

they are controlled manually by the user. We refer to this as a direct-

direct write-write relationship. As discussed earlier in Section 4.1,

we did not consider these apps as conflicting since the user controls

them. This group contains 28 pairs (2.6%), reported as pairs with

direct-direct write-write relationships in Table 5.

A second type, consisting of 302 app pairs (27.9%), exhibits app

write-read relationships, exemplified by the Greetings-Earthling

and Hello,-Home-Phrase-Director apps [4, 11]. The Greetings-

Earthling app changes the value of location.mode when the

presence sensor detects that the homeowner arrives home. On

the other hand, the Hello,-Home-Phrase-Director app sends a

greeting message to the homeowner depending on the value of

location.mode. In this case, the two apps have a composable rela-

tionship: one app reads the variable updated by the other.

A third type, consisting of 221 app pairs (20.4%), exhibits direct

write-read relationships: one app requires the user to manually

control the app to write into location.mode, while the other reads

from it. This is the intended usage scenario of location.mode,

namely to facilitate interactions between apps through mode

changes. Hence, these write-read interactions are not conflicts.

Finally, we found one pair in which both apps write into

location.mode and yet do not conflict. This pair consists of

the Greetings-Earthling and Bon-Voyage apps [9, 11]. The

Greetings-Earthling app writes into location.mode when the

user arrives at home, while the Bon-Voyage app writes into the

179

Understanding and Automatically Detecting Conflicting Interactions ... ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

same location when the user leaves. Hence, they do not conflict as

they have disjoint intents and never write at the same time. This is

an exception to our current formal definition that can be improved.

6.2 RQ2: Types of Conflicting Interactions
When two apps both write into location.mode, in most cases,

conflicts would result. There are two types of write-write con-

flicts: app-app write-write and app-direct write-write. For example,

there exists an app-app write-write conflict between the Smart-

Security and Good-Night apps [10, 15], which both attempt to

write into location.mode. While the Smart-Security app up-

dates location.mode with Home, the Good-Night app changes

location.mode to Night or Away. In Smart-Security, the update

to location.mode occurs when intrusion is detected. This is rather

an important update and the user certainly does not want the result

of the Smart-Security app to be compromised. There are 44 pairs

(4.1%) of such conflicts.

An app-direct write-write conflict occurs when in one app the

update of the global variable is triggered by a non-user input, e.g., a

sensor, while in the other app the user performs an operation that

triggers the update. For example, the first app uses the motion sen-

sor to detect if there is anyone home and updates location.mode

based on the sensor input. The second app lets the user control the

lightÐwhen the user turns on the light, location.mode is automat-

ically updated. This category has 80 (7.4%) conflicting pairs.

6.3 RQ3&4: Prevalence of Conflicts and Unsafe
Coding

There are a total of 124 (11.5%) conflicting app pairs. Thus, conflicts

are not prevalent for this type of interaction.

We found that concurrent-writes to location.mode is an unsafe

pattern, which is due to the SmartThings APIs that allow apps to

directly change the value of location.mode. For instance, in the

case of the Smart-Security app, a good practice would be to not

allow other apps to write into location.mode when the alarm is

sounding; otherwise, the alarm may be stopped abruptly before it

is noticed. In the case of modes, the combination of (1) changing

the API to specify a duration for the mode change and (2) allowing

the user to specify priorities would resolve many of the conflicts.

7 DETECTING CONFLICTS
In this section we address RQ5: How can we automatically detect

conflicts?

We developed IoTCheck, a tool that automatically identifies con-

flicts by model-checking pairs of apps. A model checker checks,

exhaustively and automatically, if a system meets a specification.

Model checking is particularly useful in detecting app conflicts

due to its ability to exhaustively check all potential interactions

between apps.

We begin by summarizing the key insights from our manual

study that we used for designing IoTCheck. Our study shows that

most device conflicts occur when two apps issue conflicting updates

to the same device. We found that when one app writes to a device

feature and another app reads from the same device feature, it typi-

cally does not represent a conflict; this scenario commonly occurs

when apps compose. We also found that it is important to consider

the reason why two apps perform conflicting updates. If both up-

dates are performed in response to user requests, there is typically

no conflict since the actions are triggered by the user. Finally, we

found that conflicts on global variables occur only when two apps

both write to the global variable; read-write interactions typically

represent normal cooperation between apps, not conflicts. IoTCheck

model-checks pairs of apps and monitors for conflicting updates to

the same device or global variables from different apps. IoTCheck

directly executes the original app code, eliminating the need to

build models of the apps. IoTCheck extends the Java Pathfinder

(JPF), an explicit state-based model checking infrastructure [77].

App
Code

IoTCheck
Preprocessor

Instrumented GrooǃǊ
Code

IoTCheck
Conİiıuration

Tool

App
Conİiıuration

GrooǃǊ
Compiler

BǊtecode
File

IoTCheck Simulation
FrameǄork

IoTCheck Monitor

JPF Ǆith GrooǃǊ
&

IoTCheck Eǉtensions

Conİlict AnalǊsis
Report

Figure 3: IoTCheck architecture.

Architecture. Figure 3 presents IoTCheck’s architecture. The ar-

rows represent the workflow of IoTCheck that starts from app

code as an input to the IoTCheck configuration tool and IoTCheck

preprocessor. Each SmartThings app has a configuration method

that asks users for configuration informationÐwhile most of the

configuration can be automatically generated, apps can ask for ar-

bitrary input and thus part of the configuration requires human

help. The IoTCheck configuration tool runs this method, automati-

cally configures most options, and asks the user for non-standard

options. The IoTCheck configuration tool then outputs app config-

uration files, which, together with the original app, are processed

by the IoTCheck preprocessor. The IoTCheck preprocessor gener-

ates model checker hooks to enable JPF to generate device events,

combines multiple apps into the same program, and sets up the

necessary configuration to run the program. It then outputs in-

strumented Groovy code which is compiled into bytecode by the

Groovy compiler.

We developed a SmartThings simulation framework for

IoTCheck. This framework contains virtualized devices (i.e., de-

vice handlers) for all of the devices used by our benchmark apps.

While an actual SmartThings device handler controls an actual

device, a virtualized device handler changes the value of a state

variable that represents the value of a device feature. Thus, a virtual

device handler for a door lock changes the value of the door lock

state variable instead of controlling an actual Zigbee door lock (see

Figure 1). These device handlers are under the control of the JPF

model checkerÐJPF triggers device events such as amotion detected

by a motion sensor, or a temperature value change detected by a

temperature sensor. For devices such as temperature sensors, there

is a large range of potential temperatures that would make model

checking infeasible without using symbolic techniques. IoTCheck

thus supports a set of potential temperature readings (e.g., a hot

180

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

reading and a cold reading), which is practical given the nature

of many smart home apps. IoTCheck does not currently model

physical interactions between devices (other than to flag that they

could potentially interact); this remains future work.

Finally, IoTCheck model-checks the generated bytecode using

the JPF model checker. We developed IoTCheck conflict analysis

as a JPF listener that performs the analysis while JPF is executing

the bytecode. When a conflict is detected, the listener halts JPF

and immediately reports the conflict. Otherwise, JPF finishes its

execution and the listener reports that there is no conflict.

Challenges. There are 3 challenges in extending JPF for IoTCheck:

(1) JPF does not provide out-of-the-box support for checking

Groovy code. One challenge is that the Groovy runtime system

keeps its own internal state that thwarts JPF’s state matching algo-

rithm; this often prevents even very simple Groovy programs from

model-checking. IoTCheck extends JPF to consider only the state of

the virtual smart home devices and the apps when matching statesÐ

it ignores state changes that are internal to the Groovy runtime

library and do not affect the behavior of apps. This creates a sec-

ond issueÐJPF generates state matching points at many execution

points. After eliminating Groovy runtime state from state matching,

there can be spurious state matches terminating JPF before the state

space is fully explored. To solve this problem, IoTCheck extends

JPF to only match states right before generating a new event.

(2) Groovy is a dynamic language. Thus, method calls are re-

solved at runtime via Java ReflectionÐJPF was missing this feature

and we had to extend it. Furthermore, the same call stack from the

perspective of the program can be implemented by many differ-

ent bytecode-level call stacks due to Groovy’s method lookup and

caching mechanisms. Since the call stack is considered by JPF’s

state matching algorithm, this can cause the algorithm to fail to

match conceptually identical states and increase the state space to

be explored. IoTCheck extends JPF’s state matching algorithm to

match conceptually identical call stacks with different bytecode-

level stacks.

(3) Scalability is a challenge for JPF as an explicit-state

model checker. IoTCheck initially exhaustively model-checks a

app pair for up to 30 minutes. If it either a detects a conflict or

completes, IoTCheck outputs the result and finishes. Otherwise,

IoTCheck falls back on JPF’s heuristic search and performs it for

an extended 30-minute period. If no conflict is detected during this

period or the tool runs out memory (usually caused by bigger apps

that have tens of events), IoTCheck reports that the result is incon-

clusive. Future work can employ techniques such as partial order

reduction to further improve IoTCheck’s performance.

Detection. Conflicts cannot be directly checked on the executions

JPF explores because state-based model checking is only guaranteed

to explore all program states and transitions and not all possible

paths through the state machine. Consider apps 𝛼1 and 𝛼2 where 𝛼1
only turns the light on and𝛼2 can turn the light on and off. A conflict

only occurs when 𝛼1 turns the light on followed by 𝛼2 turning the

light off. However, all states and transitions can be reached without

exploring this execution path. Thus, we must analyze the state

machine to determine whether it contains a conflicting path.

IoTCheck’s conflict analysis is an online analysis of the state

machine that JPF explores. Our analysis is similar to a standard

dataflow compiler analysis with the exception that in our context

Table 6: Comparison between manual study and IoTCheck.

Interaction IoTCheck Manual Study
Conflict No conflict

Device Conflict 679 38
No conflict 33 101
Not terminated 16 396
Excluded 100 75

Global-Variable Conflict 98 16
No conflict 0 318
Not terminated 0 388
Excluded 26 235

nodes represent states and edges represent transitions. IoTCheck

updates its analysis results as JPF explores new states and halts

the exploration process when a conflict is detected. We abstract

state machine as a set of nodes 𝑛 ∈ N that represent the JPF states,

and edges 𝑒 ∈ E that represent transitions between JPF states.

We denote sequences of actions using 𝐴 (see execution trace def-

initions in Section 3.1). Each transition 𝑒 has a corresponding se-

quence of actions 𝐴𝑒 . The relevant actions are write(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣)

and modewrite(𝛼 , 𝜇). We define in(𝑛) to be the set of incoming

edges to 𝑛 and src(𝑒) to be the source node of the edge 𝑒 . The analy-

sis computes the set 𝑆 (𝑛) of the most recent updates to each device

feature and mode at node 𝑛. We define app(𝑆, 𝑑, 𝑟) to be the set of

apps that have most recently updated 𝑟 on 𝑑 and value(𝑆, 𝑑, 𝑟) to be

the value of that update. We define modeapp(𝑆) to return the set of

apps that have most recently updated the mode and modevalue(𝑆)

to return the values of the most recent update to the mode set.

Figure 4 presents equations that formalize our analysis. These

equations are evaluated using a standard fixed point algorithm

whenever JPF explores a new transition to either an existing state

or a new state. Function 𝜙 applies the sequence of actions in transi-

tion to the set S for the previous node to compute the transition’s

contributions to set S for the destination node. The function update

applies an action to set S.

Results. We repeated the same set of evaluations, but using

IoTCheck to check for conflicts instead of manual inspection. Ta-

ble 6 compares IoTCheck’s results with those from themanual study.

We did not use IoTCheck to detect conflicts in physical-medium

interactions since these conflicts depend on physical factors.

For the device interaction, we initially found 829 conflicting pairs

through manual study: 632 pairs with feature conflict, 76 pairs with

invalid-local-state conflicts, and 121 pairs with dropped-update con-

flicts (see Table 3). From the 829 pairs, we had to exclude 100 conflict-

ing pairs because of the 8 apps that we could not run on IoTCheck:

5 apps use third-party features and 3 apps have serious bugs. Be-

cause of these 8 apps, we also had to exclude 75 non-conflicting

pairs. Overall, IoTCheck was able to find conflicts in 679 pairs but

failed to detect conflicts in 33 pairsÐa thorough manual inspection

confirmed that 8 pairs are indeed non-conflicting (i.e., mistakes in

our manual study), while other conflicts were not detected due to

IoTCheck’s limitations (e.g., in our modeling of time). It also did not

terminate for 16 pairs labeled as conflicting in the manual study,

but 4 of them are indeed non-conflicting. Surprisingly, IoTCheck

found 38 new conflicting pairs that were overlooked in our manual

study and labeled as non-conflicting. Thus, in total IoTCheck found

717 conflicting pairs. For the 497 pairs labeled as non-conflicting

in the manual study, IoTCheck confirms that 101 pairs are indeed

non-conflicting, whereas it did not terminate for 396 of them.

181

Understanding and Automatically Detecting Conflicting Interactions ... ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

𝑆 (𝑛) =
⋃

𝜖∈in(𝑛) 𝜙 (𝐴𝑒 , ismanual(𝜖), 𝑆 (in(𝜖)) 𝜙 (∅, 𝜆, 𝑆) = 𝑆

𝜙 (𝐴; write(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣), 𝜆, 𝑆) =

{

conflict, if(∃𝑎 ∈ app(𝑆,𝑑, 𝑟) .𝑎 ≠ 𝛼 ∧ value(𝑆,𝑑, 𝑟) ≠ 𝑣 ∧ ¬𝜆)

update(𝜙 (𝐴, 𝜆, 𝑆), 𝑤𝑟𝑖𝑡𝑒 (𝛼,𝑑, 𝜏, 𝑟, 𝑣)) otherwise

𝜙 (𝐴; modewrite(𝛼 , 𝜇), 𝜆, 𝑆) =

{

conflict, if(∃𝑎 ∈ modeapp(𝑆) .𝑎 ≠ 𝛼 ∧modevalue(𝑆) ≠ 𝜇 ∧ ¬𝜆)

update(𝜙 (𝐴, 𝜆, 𝑆),modewrite(𝛼 , 𝜇)) otherwise

update(𝑆, A) = {A′ ∈ 𝑆 | ¬A ≜ A′ } ∪ {A }

(write(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣) ≜ write(𝛼 ’, 𝑑 ’, 𝜏 ’, 𝑟 ’, 𝑣’)) := (𝑑 = 𝑑′) ∧ (𝑟 = 𝑟 ′)

(modewrite(𝛼 , 𝜇) ≜ write(𝛼 , 𝑑 , 𝜏 , 𝑟 , 𝑣)) := false

(modewrite(𝛼 , 𝜇) ≜ modewrite(𝛼 ’, 𝜇 ’)) := true

Figure 4: Conflict Analysis

For the global-variable interaction, our manual study found 124

pairs of conflicting apps: 44 pairs with app-app write-write conflicts

and 80 pairs with app-direct write-write conflicts (see Table 5). With

IoTCheck, we were able to find conflicts in 98 of the 124 pairs. We

had to exclude 26 of the pairs with conflicts because of 6 apps that

we could not run on IoTCheck: 5 apps use third-party features and 1

app has serious bugs. Additionally, IoTCheck found 16 pairs with a

conflict that was initially labeled as a non-conflicting pair. Because

we excluded 6 apps, we had to exclude 235 non-conflicting pairs ini-

tially observed in the manual study. Among the 706 non-conflicting

pairs labeled in the manual study, IoTCheck was able to complete

its check and found no conflicts in 318 of them. IoTCheck did not

terminate for 388 of them. For the physical-medium interaction,

IoTCheck generates a warning if one app uses a device that could

be the physical input of a device used by the other app.

Statistics. The average runtime for IoTCheck to find conflicts is

27 seconds for the device interaction, and 11 seconds for the global-

variable interaction. These suggest that conflicts are found quickly:

the 30-minute time limit is enough to perform an exhaustive model

checking in general. Thus, classifying non-terminating runs as non-

conflict gives IoTCheck a precision of 100% and a specificity of 100%.

The recall is 95.1% for the device interaction pairs and 100% for the

global-variable interaction pairsÐoverall recall is 95.7%.

False Positives. The false positives/negatives in our manual study

were typically due to subtle issues involving complex logic that

had several conditions for generating commands or subtle concur-

rent executionsÐplease see our tool and dataset releases for a full

accounting [71ś73].

8 RELATED WORK
The research community has recently looked into smart home

apps [25, 30, 35, 36, 39, 40, 55, 61, 70, 83]. Fernandes et al. present

a thorough study on the SmartThings environment [39]. They

pointed out underlying security issues and a simple program anal-

ysis to detect the overprivilege issue in the app source code. In [40],

Fernandes et al. present a solution to prevent applications from

leaking confidential information.

Researchers have presented new techniques to model-check and

analyze confidential information leakage in smart home applica-

tions. The techniques presented in [60, 61] require translating the

apps to perform the model checking using SPIN [45]. The limi-

tation is that the expressiveness of app features could be lost in

translation: with just 3 apps the authors found 1 feature that their

system could not express concisely [60]. Other work [30, 35, 36]

ignores internal application state, and thus admits executions that

cannot happen. Several of our apps depend on internal state to

decide whether to perform an action, and thus they would not be

accurately modeled by their techniques. While conflicts between

apps are discussed in [36], they considered a much smaller cor-

pus of apps and a number of of them are self-crafted to generate

the intended conflicts. Unfortunately, their system is not publicly

available for comparison.

The interactions of smart home apps also appear similar to event-

based races in mobile apps [31, 46, 47, 57, 66]. Related work on mo-

bile apps deals with events only in one app by introducing various

new synchronization mechanisms. However, our work focuses on

the interactions between multiple apps. The event handlers in these

apps are developed by different programmers with absolutely no

coordination. In addition, a number of apps also allow the user to

generate arbitrary events, e.g., using a touch screen. Hence, even if

the ordering between events in one app can be clearly defined, the

ordering between events across multiple apps combined with user-

generated events is complicated and arbitraryÐsynchronizations

in individual apps would not be useful in this context.

There have also been efforts to resolve the conflicts between

smart home apps from the perspective of dependencies between ap-

plication components at the system level [58, 75, 76, 79, 80]. Several

systems [75, 76, 79] provide frameworks for programming networks

of sensors and actuators. DepSys [58] provides infrastructure with

comprehensive strategies to specify, detect, and resolve conflicts

through the use of user-specified metadata. Kripke [80] performs

conflict detection through the use of model checking. Our work is

orthogonal to this body of work that attempts to deal with conflicts

between apps at the system level, by viewing apps as black boxes.

Our work, on the contrary, studies how apps interact and what can

be done at the source code level to mitigate conflicts.

9 CONCLUSION
This paper presents a comprehensive study of interactions and

conflicts between smart home apps, as well as an automated tool

for finding conflicts. These results can be readily used to guide

future design of smart home systems and apps.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their invaluable feedback.

This project was partly supported by the National Science Founda-

tion under grants CNS-1613023, CNS-1703598, CNS-1763172, OAC-

1740210, CCF-1837120, CNS-2006437, CCF-2006948, CNS-2007737,

and by the Office of Naval Research under grants N00014-16-1-2913

and N00014-18-1-2037.

182

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

REFERENCES
[1] 2013. Forgiving Security. https://github.com/imbrianj/forgiving_security/blob/

master/forgiving_security.groovy.
[2] 2014. Auto Humidity Vent. https://github.com/SmartThingsCommunity/

SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy.

[3] 2014. Close The Valve. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/close-the-valve.src/close-the-valve.groovy.

[4] 2014. Hello, Home Phrase Director. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-
director.groovy.

[5] 2014. Lock it at a specific time. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-
time.groovy.

[6] 2014. Sprayer Controller 2. https://github.com/erocm123/SmartThingsPublic-
1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-
controller-2.groovy.

[7] 2015. Big Turn OFF. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/big-turn-off.src/big-turn-off.groovy.

[8] 2015. Big Turn ON. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/big-turn-on.src/big-turn-on.groovy.

[9] 2015. Bon Voyage. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/bon-voyage.src/bon-voyage.groovy.

[10] 2015. Good Night. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/good-night.src/good-night.groovy.

[11] 2015. Greetings Earthling. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy.

[12] 2015. Keep Me Cozy. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy.

[13] 2015. Light Up the Night. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy.

[14] 2015. Lock It When I Leave. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy.

[15] 2015. Smart Security. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.
src/smart-security.groovy.

[16] 2015. Turn On at Sunset. https://github.com/SmartThingsCommunity/Code/
blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy.

[17] 2016. Initial State Event Streamer. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-
event-streamer.src/initial-state-event-streamer.groovy.

[18] 2016. Understanding Illuminance: What’s in a Lux? https://www.allaboutcircuits.
com/technical-articles/understanding-illuminance-whats-in-a-lux/.

[19] 2017. InfluxDB Logger. https://github.com/codersaur/SmartThings/blob/master/
smartapps/influxdb-logger/influxdb-logger.groovy.

[20] 2017. Thermostats. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/thermostats.src/thermostats.groovy.

[21] 2018. IFTTT. https://www.ifttt.com/.
[22] 2018. Initial State. https://www.initialstate.com/.
[23] 2018. Neato (Connect). https://github.com/alyc100/SmartThingsPublic/blob/

master/smartapps/alyc100/neato-connect.src/neato-connect.groovy.
[24] 2019. SmartThings Groovy IDE. https://graph.api.smartthings.com/.
[25] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. Sok:

Security evaluation of home-based iot deployments. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1362ś1380.

[26] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. 2013. Exploring Feature Interactions in the Wild: The New Feature-
interaction Challenge. In Proceedings of the 5th International Workshop on Feature-
Oriented Software Development (FOSD). 1ś8.

[27] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kästner. 2010.
Detecting Dependences and Interactions in Feature-Oriented Design. In IEEE 21st
International Symposium on Software Reliability Engineering (ISSRE). 161ś170.

[28] Sven Apel, Alexander Von Rhein, Thomas ThüM, and Christian KäStner. 2013.
Feature-interaction Detection Based on Feature-based Specifications. Computer
Networks: The International Journal of Computer and Telecommunications Net-
working 57, 12 (August 2013), 2399ś2409.

[29] Hamid Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2016.
Practical, formal synthesis and automatic enforcement of security policies for
android. In 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 514ś525.

[30] Z Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan, and Patrick McDaniel.
2018. Program Analysis of Commodity IoT Applications for Security and Privacy:
Challenges and Opportunities. arXiv preprint arXiv:1809.06962 (2018).

[31] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable Race Detection
for Android Applications. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Pittsburgh, PA, USA) (OOPSLA 2015). ACM, New York, NY, USA, 332ś348. https:
//doi.org/10.1145/2814270.2814303

[32] Amiangshu Bosu, Fang Liu, Danfeng Daphne Yao, and Gang Wang. 2017. Collu-
sive data leak and more: Large-scale threat analysis of inter-app communications.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communica-
tions Security. ACM, 71ś85.

[33] Muffy Calder, Mario Kolberg, Evan H Magill, and Stephan Reiff-Marganiec. 2003.
Feature interaction: a critical review and considered forecast. Computer Networks
41, 1 (2003), 115ś141.

[34] Nguyen Tan Cam, Pham Van Hau, and Tuan Nguyen. 2016. Android security
analysis based on inter-application relationships. In Information Science and
Applications (ICISA) 2016. Springer, 689ś700.

[35] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A Selcuk Uluagac. [n.d.]. Sensitive Information Tracking
in Commodity IoT. In 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association.

[36] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
IoT Safety and Security Analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association.

[37] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and
Andrew F. Stark. 1998. Detecting Data Races in Cilk Programs That Use Locks.
In Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and
Architectures (Puerto Vallarta, Mexico) (SPAA ’98). ACM, New York, NY, USA,
298ś309. https://doi.org/10.1145/277651.277696

[38] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of
Race Conditions and Deadlocks. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (Bolton Landing, NY, USA) (SOSP ’03). ACM, New
York, NY, USA, 237ś252. https://doi.org/10.1145/945445.945468

[39] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 636ś654.

[40] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. FlowFence: Practical Data Protection for Emerg-
ing IoT Application Frameworks. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 531ś548. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/fernandes

[41] Cormac Flanagan and Stephen N Freund. 2004. Atomizer: A Dynamic Atomicity
Checker for Multithreaded Programs. In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL
’04). ACM, New York, NY, USA, 256ś267. https://doi.org/10.1145/964001.964023

[42] The Apache Software Foundation. 2003-2018. The Apache Groovy programming
language. http://groovy-lang.org/.

[43] Google. 2018. Android Things website. https://developer.android.com/things/.
[44] Yi He, Qi Li, and Kun Sun. 2017. LinkFlow: Efficient Large-Scale Inter-app

Privacy Leakage Detection. In International Conference on Security and Privacy in
Communication Systems. Springer, 291ś311.

[45] Gerard J Holzmann. [n.d.]. The SPIN model checker: Primer and reference manual.
Vol. 1003.

[46] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L. Pereira,
Gilles A. Pokam, Peter M. Chen, and Jason Flinn. 2014. Race Detection for
Event-driven Mobile Applications. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Edinburgh,
United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 326ś336. https://doi.
org/10.1145/2594291.2594330

[47] Yongjian Hu and Iulian Neamtiu. 2018. Static Detection of Event-based Races
in Android Apps. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems
(Williamsburg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA, 257ś270.
https://doi.org/10.1145/3173162.3173173

[48] Michael Jackson and Pamela Zave. 1998. Distributed Feature Composition: A
Virtual Architecture for Telecommunications Services. IEEE Transactions on
Software Engineering 24, 10 (October 1998), 831ś847.

[49] Youn Kyu Lee, Jae Young Bang, Gholamreza Safi, Arman Shahbazian, Yixue Zhao,
and Nenad Medvidovic. 2017. A sealant for inter-app security holes in android.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
IEEE, 312ś323.

[50] Pattara Leelaprute, Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno.
2008. Detecting Feature Interactions in Home Appliance Networks. In Proceedings

183

https://github.com/imbrianj/forgiving_security/blob/master/forgiving_security.groovy
https://github.com/imbrianj/forgiving_security/blob/master/forgiving_security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy
https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
https://www.allaboutcircuits.com/technical-articles/understanding-illuminance-whats-in-a-lux/
https://www.allaboutcircuits.com/technical-articles/understanding-illuminance-whats-in-a-lux/
https://github.com/codersaur/SmartThings/blob/master/smartapps/influxdb-logger/influxdb-logger.groovy
https://github.com/codersaur/SmartThings/blob/master/smartapps/influxdb-logger/influxdb-logger.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://www.ifttt.com/
https://www.initialstate.com/
https://github.com/alyc100/SmartThingsPublic/blob/master/smartapps/alyc100/neato-connect.src/neato-connect.groovy
https://github.com/alyc100/SmartThingsPublic/blob/master/smartapps/alyc100/neato-connect.src/neato-connect.groovy
https://graph.api.smartthings.com/
https://doi.org/10.1145/2814270.2814303
https://doi.org/10.1145/2814270.2814303
https://doi.org/10.1145/277651.277696
https://doi.org/10.1145/945445.945468
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://doi.org/10.1145/964001.964023
http://groovy-lang.org/
https://developer.android.com/things/
https://doi.org/10.1145/2594291.2594330
https://doi.org/10.1145/2594291.2594330
https://doi.org/10.1145/3173162.3173173

Understanding and Automatically Detecting Conflicting Interactions ... ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

of the 2008 Ninth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD). 895ś903.

[51] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
2015. Apkcombiner: Combining multiple android apps to support inter-app anal-
ysis. In IFIP International Information Security and Privacy Conference. Springer,
513ś527.

[52] Xinyi Li, Lei Zhang, and Xipeng Shen. 2019. IA-graph Based Inter-app Conflicts
Detection in Open IoT Systems. In Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems.
135ś147.

[53] Xinyi Li, Lei Zhang, Xipeng Shen, and Yong Qi. 2017. A Systematic Examination
of Inter-App Conflicts Detections in Open IoT Systems. Technical Report TR-2017-1.
North Carolina State University, Dept. of Computer Science.

[54] Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic Race Detection
for C++11. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY, USA,
443ś457. https://doi.org/10.1145/3009837.3009857

[55] Renju Liu, Ziqi Wang, Luis Garcia, and Mani Srivastava. 2019. RemedioT: Re-
medial Actions for Internet-of-Things Conflicts. In Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation (BuildSys ’19). 101ś110.

[56] Shan Lu, Soyeon Park, and Yuanyuan Zhou. 2012. Finding atomicity-violation
bugs through unserializable interleaving testing. IEEE Transactions on Software
Engineering 38, 4 (2012), 844ś860.

[57] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race Detection
for Android Applications. SIGPLAN Not. 49, 6 (June 2014), 316ś325. https:
//doi.org/10.1145/2666356.2594311

[58] Sirajum Munir and John A. Stankovic. 2014. DepSys: Dependency Aware Inte-
gration of Cyber-Physical Systems for Smart Homes. In ICCPS ’14: ACM/IEEE 5th
International Conference on Cyber-Physical Systems (with CPS Week 2014) (Berlin,
Germany) (ICCPS ’14). IEEE Computer Society, Washington, DC, USA, 127ś138.
https://doi.org/10.1109/ICCPS.2014.6843717

[59] Chandrakana Nandi and Michael D. Ernst. 2016. Automatic Trigger Genera-
tion for Rule-based Smart Homes. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security (PLAS). 97ś102.

[60] Julie L Newcomb, Satish Chandra, Jean-Baptiste Jeannin, Cole Schlesinger, and
Manu Sridharan. 2017. IOTA: a calculus for internet of things automation. In
Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. 119ś133.

[61] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V. Krishnamurthy, Ed-
ward J. M. Colbert, and Patrick McDaniel. 2018. IotSan: Fortifying the Safety of
Systems. In Proceedings of the 14th International Conference on Emerging Network-
ing EXperiments and Technologies (Heraklion, Greece) (CoNEXT ’18). ACM, New
York, NY, USA, 191ś203. https://doi.org/10.1145/3281411.3281440

[62] openHAB. 2018. openHAB website. https://www.openhab.org/.
[63] Sebastian Oster, Marius Zink, Malte Lochau, and Mark Grechanik. 2011. Pairwise

Feature-interaction Testing for SPLs: Potentials and Limitations. In Proceedings
of the 15th International Software Product Line Conference (SPLC). Article 6, 6:1ś
6:8 pages.

[64] Yves Racine. 2014. FireCO2Alarm SmartApp. https://github.com/yracine/device-
type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.
groovy.

[65] Ajitha Rajan, Lydie du Bousquet, Yves Ledru, German Vega, and Jean-Luc Richier.
2010. Assertion-based Test Oracles for Home Automation Systems. In Proceedings
of the 7th International Workshop on Model-Based Methodologies for Pervasive and
Embedded Software (MOMPRES). 45ś52.

[66] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective Race
Detection for Event-driven Programs. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages

& Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York,
NY, USA, 151ś166. https://doi.org/10.1145/2509136.2509538

[67] Chris Sader. 2013. Auto Lock Door SmartApp. https://github.com/smartthings-
users/smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy.

[68] SmartThings. 2018. SmartThings Public GitHub Repo. https://github.com/
SmartThingsCommunity/SmartThingsPublic.

[69] Samsung SmartThings. 2018. Samsung SmartThings website. http://www.
smartthings.com.

[70] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, XianZheng
Guo, and Patrick Tague. 2017. Smartauth: User-centered Authorization for the
Internet of Things. In Proceedings of the 26th USENIX Conference on Security
Symposium (Vancouver, BC, Canada) (SEC’17). USENIX Association, Berkeley,
CA, USA, 361ś378. http://dl.acm.org/citation.cfm?id=3241189.3241219

[71] Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian Demsky,
and Guoqing Harry Xu. 2020. IoTCheck. http://plrg.ics.uci.edu/iotcheck/. https:
//doi.org/10.5281/zenodo.3866497

[72] Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian Demsky,
and Guoqing Harry Xu. 2020. IoTCheck and manual study supporting materials.
http://plrg.ics.uci.edu/iotcheck/. https://doi.org/10.5281/zenodo.3866499

[73] Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian Demsky,
and Guoqing Harry Xu. 2020. IoTCheck Vagrant package. http://plrg.ics.uci.edu/
iotcheck/. https://doi.org/10.5281/zenodo.3866491

[74] Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-An, Gregg Rothermel, and Jack-
son Dinh. 2017. An efficient, robust, and scalable approach for analyzing inter-
acting android apps. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 324ś334.

[75] Pascal A Vicaire, Enamul Hoque, Zhiheng Xie, and John A Stankovic. 2012.
Bundle: A group-based programming abstraction for cyber-physical systems.
IEEE Transactions on Industrial Informatics 8, 2 (2012), 379ś392.

[76] Pascal A Vicaire, Zhiheng Xie, Enamul Hoque, and John A Stankovic. 2010. Phys-
icalnet: A generic framework for managing and programming across pervasive
computing networks. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2010 16th IEEE. IEEE, 269ś278.

[77] William Visser, Klaus Havelund, Guillaume Brat, SeungJuun Park, and Flavio
Lerda. 2003. Model checking programs. 10 (April 2003), 203ś232. Issue 2.

[78] Michael Wilson, Mario Kolberg, and Evan H. Magill. 2008. Considering side
effects in service interactions in home automation-an online approach. Feature
Interactions in Software and Communication Systems IX (2008), 172ś187.

[79] Anthony D Wood, John A Stankovic, Gilles Virone, Leo Selavo, Zhimin He,
Qiuhua Cao, Thao Doan, Yafeng Wu, Lei Fang, and Radu Stoleru. 2008. Context-
aware wireless sensor networks for assisted living and residential monitoring.
IEEE network 22, 4 (2008).

[80] Miki Yagita, Fuyuki Ishikawa, and Shinichi Honiden. 2015. An Application
Conflict Detection and Resolution System for Smart Homes. In Proceedings of the
First International Workshop on Software Engineering for Smart Cyber-Physical
Systems (Florence, Italy) (SEsCPS ’15). IEEE Press, Piscataway, NJ, USA, 33ś39.
http://dl.acm.org/citation.cfm?id=2821404.2821413

[81] Svetlana Yarosh and Pamela Zave. 2017. Locked or Not?: Mental Models of IoT
Feature Interaction. In Proceedings of the 2017 Conference on Human Factors in
Computing Systems (CHI). 2993ś2997.

[82] Adarsh Yoga and Santosh Nagarakatte. 2016. Atomicity Violation Checker for
Task Parallel Programs. In Proceedings of the 2016 International Symposium on
Code Generation and Optimization (Barcelona, Spain) (CGO ’16). ACM, New York,
NY, USA, 239ś249. https://doi.org/10.1145/2854038.2854063

[83] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. HoMonit: Monitoring Smart Home Apps from Encrypted Traffic. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1074ś1088.
https://doi.org/10.1145/3243734.3243820

184

https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/2666356.2594311
https://doi.org/10.1145/2666356.2594311
https://doi.org/10.1109/ICCPS.2014.6843717
https://doi.org/10.1145/3281411.3281440
https://www.openhab.org/
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://doi.org/10.1145/2509136.2509538
https://github.com/smartthings-users/smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy
https://github.com/smartthings-users/smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
http://www.smartthings.com
http://www.smartthings.com
http://dl.acm.org/citation.cfm?id=3241189.3241219
http://plrg.ics.uci.edu/iotcheck/
https://doi.org/10.5281/zenodo.3866497
https://doi.org/10.5281/zenodo.3866497
http://plrg.ics.uci.edu/iotcheck/
https://doi.org/10.5281/zenodo.3866499
http://plrg.ics.uci.edu/iotcheck/
http://plrg.ics.uci.edu/iotcheck/
https://doi.org/10.5281/zenodo.3866491
http://dl.acm.org/citation.cfm?id=2821404.2821413
https://doi.org/10.1145/2854038.2854063
https://doi.org/10.1145/3243734.3243820

	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Our Contributions

	2 Background
	3 Methodology
	3.1 Definitions
	3.2 Smart Home App Pairs
	3.3 Threats to Validity

	4 Device Interaction
	4.1 RQ1: Types of Non-Conflicting Interactions
	4.2 RQ2: Types of Conflicting Interactions
	4.3 RQ3: Prevalence of Conflicts
	4.4 RQ4: Unsafe Coding Patterns

	5 Physical-Medium Interaction
	5.1 RQ1&2: Types of (Non-)Conflicting Interactions
	5.2 RQ3&4: Prevalence of Conflicts/Unsafe Coding

	6 Global-Variable Interaction
	6.1 RQ1: Types of Non-Conflicting Interactions
	6.2 RQ2: Types of Conflicting Interactions
	6.3 RQ3&4: Prevalence of Conflicts and Unsafe Coding

	7 Detecting Conflicts
	8 Related Work
	9 Conclusion
	References

